A mobility-aware task scheduling by hybrid PSO and GA for mobile edge computing

Mobile edge computing (MEC) is considered one of the key technologies for large-scale network services. Task scheduling helps to improve the task completion rate of MEC, by properly mapping tasks generated by devices onto MEC resources. However, the mobility of devices introduces complexities, poten...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Cluster computing 2024-09, Vol.27 (6), p.7439-7454
Hauptverfasser: Sang, Yongxuan, Wei, Jiangpo, Zhang, Zhifeng, Wang, Bo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 7454
container_issue 6
container_start_page 7439
container_title Cluster computing
container_volume 27
creator Sang, Yongxuan
Wei, Jiangpo
Zhang, Zhifeng
Wang, Bo
description Mobile edge computing (MEC) is considered one of the key technologies for large-scale network services. Task scheduling helps to improve the task completion rate of MEC, by properly mapping tasks generated by devices onto MEC resources. However, the mobility of devices introduces complexities, potentially resulting in failed task offloading or unavailable task results. To tackle this issue, we propose a mobile-aware task scheduling scheme. We first model the trajectory of mobile devices and introduce a strategy for the fastest task offloading, coupled with an efficient result return method. Subsequently, to improve the task completion rate, we present a task scheduling model based on task migration and formulate the relevant problem as a Mixed Integer Non-linear Programming (MINLP) problem. To achieve a solution within a reasonable time complexity, we propose a Particle Swarm Optimization and Genetic Algorithm with a Rescheduling operator (PSOGAR). In PSOGAR, particles update their positions using a mating operator, while maintaining diversity by a mutation operator. In addition, a rescheduling operator is used to further improve the task completion rate. Finally, through simulation experiments, compare PSOGAR with state-of-the-art and classic algorithms. The experimental results show that PSOGAR can improve the task completion rate by 18–31% and can be applied to scenarios with tight task deadlines.
doi_str_mv 10.1007/s10586-024-04341-6
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3100672387</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3100672387</sourcerecordid><originalsourceid>FETCH-LOGICAL-c270t-7142160bf28ddc6c4bbf103b64576d6a1b295d2d5ece673f1b50ff05078e01503</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMoWKt_wFPAc3SSbJLtsRStQqGCeg6br3Zru1uTXWT_vdEVvHmagXned-BB6JrCLQVQd4mCKCUBVhAoeEGJPEETKhQnShT8NO88n1Up1Dm6SGkHADPFZhO0nuNDa-p93Q2k-qyix12V3nGyW-_6fd1ssBnwdjCxdvj5ZY2rxuHlHIc2jjmPvdt4bNvDse8yfonOQrVP_up3TtHbw_3r4pGs1sunxXxFLFPQEUULRiWYwErnrLSFMYECN7IQSjpZUcNmwjEnvPVS8UCNgBBAgCo9UAF8im7G3mNsP3qfOr1r-9jkl5pnI1IxXqpMsZGysU0p-qCPsT5UcdAU9Lc4PYrTWZz-EadlDvExlDLcbHz8q_4n9QUnK28o</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3100672387</pqid></control><display><type>article</type><title>A mobility-aware task scheduling by hybrid PSO and GA for mobile edge computing</title><source>SpringerLink (Online service)</source><creator>Sang, Yongxuan ; Wei, Jiangpo ; Zhang, Zhifeng ; Wang, Bo</creator><creatorcontrib>Sang, Yongxuan ; Wei, Jiangpo ; Zhang, Zhifeng ; Wang, Bo</creatorcontrib><description>Mobile edge computing (MEC) is considered one of the key technologies for large-scale network services. Task scheduling helps to improve the task completion rate of MEC, by properly mapping tasks generated by devices onto MEC resources. However, the mobility of devices introduces complexities, potentially resulting in failed task offloading or unavailable task results. To tackle this issue, we propose a mobile-aware task scheduling scheme. We first model the trajectory of mobile devices and introduce a strategy for the fastest task offloading, coupled with an efficient result return method. Subsequently, to improve the task completion rate, we present a task scheduling model based on task migration and formulate the relevant problem as a Mixed Integer Non-linear Programming (MINLP) problem. To achieve a solution within a reasonable time complexity, we propose a Particle Swarm Optimization and Genetic Algorithm with a Rescheduling operator (PSOGAR). In PSOGAR, particles update their positions using a mating operator, while maintaining diversity by a mutation operator. In addition, a rescheduling operator is used to further improve the task completion rate. Finally, through simulation experiments, compare PSOGAR with state-of-the-art and classic algorithms. The experimental results show that PSOGAR can improve the task completion rate by 18–31% and can be applied to scenarios with tight task deadlines.</description><identifier>ISSN: 1386-7857</identifier><identifier>EISSN: 1573-7543</identifier><identifier>DOI: 10.1007/s10586-024-04341-6</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Communication ; Computation offloading ; Computer Communication Networks ; Computer Science ; Cooperation ; Edge computing ; Efficiency ; Energy consumption ; Genetic algorithms ; Heuristic ; Internet of Things ; Linear programming ; Mixed integer ; Mobile computing ; Nonlinear programming ; Operating Systems ; Optimization ; Particle swarm optimization ; Processor Architectures ; Rescheduling ; Resource scheduling ; Scheduling ; Task complexity ; Task scheduling ; Vehicles ; Wide area networks</subject><ispartof>Cluster computing, 2024-09, Vol.27 (6), p.7439-7454</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c270t-7142160bf28ddc6c4bbf103b64576d6a1b295d2d5ece673f1b50ff05078e01503</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10586-024-04341-6$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10586-024-04341-6$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Sang, Yongxuan</creatorcontrib><creatorcontrib>Wei, Jiangpo</creatorcontrib><creatorcontrib>Zhang, Zhifeng</creatorcontrib><creatorcontrib>Wang, Bo</creatorcontrib><title>A mobility-aware task scheduling by hybrid PSO and GA for mobile edge computing</title><title>Cluster computing</title><addtitle>Cluster Comput</addtitle><description>Mobile edge computing (MEC) is considered one of the key technologies for large-scale network services. Task scheduling helps to improve the task completion rate of MEC, by properly mapping tasks generated by devices onto MEC resources. However, the mobility of devices introduces complexities, potentially resulting in failed task offloading or unavailable task results. To tackle this issue, we propose a mobile-aware task scheduling scheme. We first model the trajectory of mobile devices and introduce a strategy for the fastest task offloading, coupled with an efficient result return method. Subsequently, to improve the task completion rate, we present a task scheduling model based on task migration and formulate the relevant problem as a Mixed Integer Non-linear Programming (MINLP) problem. To achieve a solution within a reasonable time complexity, we propose a Particle Swarm Optimization and Genetic Algorithm with a Rescheduling operator (PSOGAR). In PSOGAR, particles update their positions using a mating operator, while maintaining diversity by a mutation operator. In addition, a rescheduling operator is used to further improve the task completion rate. Finally, through simulation experiments, compare PSOGAR with state-of-the-art and classic algorithms. The experimental results show that PSOGAR can improve the task completion rate by 18–31% and can be applied to scenarios with tight task deadlines.</description><subject>Communication</subject><subject>Computation offloading</subject><subject>Computer Communication Networks</subject><subject>Computer Science</subject><subject>Cooperation</subject><subject>Edge computing</subject><subject>Efficiency</subject><subject>Energy consumption</subject><subject>Genetic algorithms</subject><subject>Heuristic</subject><subject>Internet of Things</subject><subject>Linear programming</subject><subject>Mixed integer</subject><subject>Mobile computing</subject><subject>Nonlinear programming</subject><subject>Operating Systems</subject><subject>Optimization</subject><subject>Particle swarm optimization</subject><subject>Processor Architectures</subject><subject>Rescheduling</subject><subject>Resource scheduling</subject><subject>Scheduling</subject><subject>Task complexity</subject><subject>Task scheduling</subject><subject>Vehicles</subject><subject>Wide area networks</subject><issn>1386-7857</issn><issn>1573-7543</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LAzEQhoMoWKt_wFPAc3SSbJLtsRStQqGCeg6br3Zru1uTXWT_vdEVvHmagXned-BB6JrCLQVQd4mCKCUBVhAoeEGJPEETKhQnShT8NO88n1Up1Dm6SGkHADPFZhO0nuNDa-p93Q2k-qyix12V3nGyW-_6fd1ssBnwdjCxdvj5ZY2rxuHlHIc2jjmPvdt4bNvDse8yfonOQrVP_up3TtHbw_3r4pGs1sunxXxFLFPQEUULRiWYwErnrLSFMYECN7IQSjpZUcNmwjEnvPVS8UCNgBBAgCo9UAF8im7G3mNsP3qfOr1r-9jkl5pnI1IxXqpMsZGysU0p-qCPsT5UcdAU9Lc4PYrTWZz-EadlDvExlDLcbHz8q_4n9QUnK28o</recordid><startdate>20240901</startdate><enddate>20240901</enddate><creator>Sang, Yongxuan</creator><creator>Wei, Jiangpo</creator><creator>Zhang, Zhifeng</creator><creator>Wang, Bo</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>JQ2</scope></search><sort><creationdate>20240901</creationdate><title>A mobility-aware task scheduling by hybrid PSO and GA for mobile edge computing</title><author>Sang, Yongxuan ; Wei, Jiangpo ; Zhang, Zhifeng ; Wang, Bo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c270t-7142160bf28ddc6c4bbf103b64576d6a1b295d2d5ece673f1b50ff05078e01503</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Communication</topic><topic>Computation offloading</topic><topic>Computer Communication Networks</topic><topic>Computer Science</topic><topic>Cooperation</topic><topic>Edge computing</topic><topic>Efficiency</topic><topic>Energy consumption</topic><topic>Genetic algorithms</topic><topic>Heuristic</topic><topic>Internet of Things</topic><topic>Linear programming</topic><topic>Mixed integer</topic><topic>Mobile computing</topic><topic>Nonlinear programming</topic><topic>Operating Systems</topic><topic>Optimization</topic><topic>Particle swarm optimization</topic><topic>Processor Architectures</topic><topic>Rescheduling</topic><topic>Resource scheduling</topic><topic>Scheduling</topic><topic>Task complexity</topic><topic>Task scheduling</topic><topic>Vehicles</topic><topic>Wide area networks</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sang, Yongxuan</creatorcontrib><creatorcontrib>Wei, Jiangpo</creatorcontrib><creatorcontrib>Zhang, Zhifeng</creatorcontrib><creatorcontrib>Wang, Bo</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Computer Science Collection</collection><jtitle>Cluster computing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sang, Yongxuan</au><au>Wei, Jiangpo</au><au>Zhang, Zhifeng</au><au>Wang, Bo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A mobility-aware task scheduling by hybrid PSO and GA for mobile edge computing</atitle><jtitle>Cluster computing</jtitle><stitle>Cluster Comput</stitle><date>2024-09-01</date><risdate>2024</risdate><volume>27</volume><issue>6</issue><spage>7439</spage><epage>7454</epage><pages>7439-7454</pages><issn>1386-7857</issn><eissn>1573-7543</eissn><abstract>Mobile edge computing (MEC) is considered one of the key technologies for large-scale network services. Task scheduling helps to improve the task completion rate of MEC, by properly mapping tasks generated by devices onto MEC resources. However, the mobility of devices introduces complexities, potentially resulting in failed task offloading or unavailable task results. To tackle this issue, we propose a mobile-aware task scheduling scheme. We first model the trajectory of mobile devices and introduce a strategy for the fastest task offloading, coupled with an efficient result return method. Subsequently, to improve the task completion rate, we present a task scheduling model based on task migration and formulate the relevant problem as a Mixed Integer Non-linear Programming (MINLP) problem. To achieve a solution within a reasonable time complexity, we propose a Particle Swarm Optimization and Genetic Algorithm with a Rescheduling operator (PSOGAR). In PSOGAR, particles update their positions using a mating operator, while maintaining diversity by a mutation operator. In addition, a rescheduling operator is used to further improve the task completion rate. Finally, through simulation experiments, compare PSOGAR with state-of-the-art and classic algorithms. The experimental results show that PSOGAR can improve the task completion rate by 18–31% and can be applied to scenarios with tight task deadlines.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10586-024-04341-6</doi><tpages>16</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1386-7857
ispartof Cluster computing, 2024-09, Vol.27 (6), p.7439-7454
issn 1386-7857
1573-7543
language eng
recordid cdi_proquest_journals_3100672387
source SpringerLink (Online service)
subjects Communication
Computation offloading
Computer Communication Networks
Computer Science
Cooperation
Edge computing
Efficiency
Energy consumption
Genetic algorithms
Heuristic
Internet of Things
Linear programming
Mixed integer
Mobile computing
Nonlinear programming
Operating Systems
Optimization
Particle swarm optimization
Processor Architectures
Rescheduling
Resource scheduling
Scheduling
Task complexity
Task scheduling
Vehicles
Wide area networks
title A mobility-aware task scheduling by hybrid PSO and GA for mobile edge computing
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T07%3A46%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20mobility-aware%20task%20scheduling%20by%20hybrid%20PSO%20and%20GA%20for%20mobile%20edge%20computing&rft.jtitle=Cluster%20computing&rft.au=Sang,%20Yongxuan&rft.date=2024-09-01&rft.volume=27&rft.issue=6&rft.spage=7439&rft.epage=7454&rft.pages=7439-7454&rft.issn=1386-7857&rft.eissn=1573-7543&rft_id=info:doi/10.1007/s10586-024-04341-6&rft_dat=%3Cproquest_cross%3E3100672387%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3100672387&rft_id=info:pmid/&rfr_iscdi=true