A mobility-aware task scheduling by hybrid PSO and GA for mobile edge computing
Mobile edge computing (MEC) is considered one of the key technologies for large-scale network services. Task scheduling helps to improve the task completion rate of MEC, by properly mapping tasks generated by devices onto MEC resources. However, the mobility of devices introduces complexities, poten...
Gespeichert in:
Veröffentlicht in: | Cluster computing 2024-09, Vol.27 (6), p.7439-7454 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 7454 |
---|---|
container_issue | 6 |
container_start_page | 7439 |
container_title | Cluster computing |
container_volume | 27 |
creator | Sang, Yongxuan Wei, Jiangpo Zhang, Zhifeng Wang, Bo |
description | Mobile edge computing (MEC) is considered one of the key technologies for large-scale network services. Task scheduling helps to improve the task completion rate of MEC, by properly mapping tasks generated by devices onto MEC resources. However, the mobility of devices introduces complexities, potentially resulting in failed task offloading or unavailable task results. To tackle this issue, we propose a mobile-aware task scheduling scheme. We first model the trajectory of mobile devices and introduce a strategy for the fastest task offloading, coupled with an efficient result return method. Subsequently, to improve the task completion rate, we present a task scheduling model based on task migration and formulate the relevant problem as a Mixed Integer Non-linear Programming (MINLP) problem. To achieve a solution within a reasonable time complexity, we propose a Particle Swarm Optimization and Genetic Algorithm with a Rescheduling operator (PSOGAR). In PSOGAR, particles update their positions using a mating operator, while maintaining diversity by a mutation operator. In addition, a rescheduling operator is used to further improve the task completion rate. Finally, through simulation experiments, compare PSOGAR with state-of-the-art and classic algorithms. The experimental results show that PSOGAR can improve the task completion rate by 18–31% and can be applied to scenarios with tight task deadlines. |
doi_str_mv | 10.1007/s10586-024-04341-6 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3100672387</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3100672387</sourcerecordid><originalsourceid>FETCH-LOGICAL-c270t-7142160bf28ddc6c4bbf103b64576d6a1b295d2d5ece673f1b50ff05078e01503</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMoWKt_wFPAc3SSbJLtsRStQqGCeg6br3Zru1uTXWT_vdEVvHmagXned-BB6JrCLQVQd4mCKCUBVhAoeEGJPEETKhQnShT8NO88n1Up1Dm6SGkHADPFZhO0nuNDa-p93Q2k-qyix12V3nGyW-_6fd1ssBnwdjCxdvj5ZY2rxuHlHIc2jjmPvdt4bNvDse8yfonOQrVP_up3TtHbw_3r4pGs1sunxXxFLFPQEUULRiWYwErnrLSFMYECN7IQSjpZUcNmwjEnvPVS8UCNgBBAgCo9UAF8im7G3mNsP3qfOr1r-9jkl5pnI1IxXqpMsZGysU0p-qCPsT5UcdAU9Lc4PYrTWZz-EadlDvExlDLcbHz8q_4n9QUnK28o</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3100672387</pqid></control><display><type>article</type><title>A mobility-aware task scheduling by hybrid PSO and GA for mobile edge computing</title><source>SpringerLink (Online service)</source><creator>Sang, Yongxuan ; Wei, Jiangpo ; Zhang, Zhifeng ; Wang, Bo</creator><creatorcontrib>Sang, Yongxuan ; Wei, Jiangpo ; Zhang, Zhifeng ; Wang, Bo</creatorcontrib><description>Mobile edge computing (MEC) is considered one of the key technologies for large-scale network services. Task scheduling helps to improve the task completion rate of MEC, by properly mapping tasks generated by devices onto MEC resources. However, the mobility of devices introduces complexities, potentially resulting in failed task offloading or unavailable task results. To tackle this issue, we propose a mobile-aware task scheduling scheme. We first model the trajectory of mobile devices and introduce a strategy for the fastest task offloading, coupled with an efficient result return method. Subsequently, to improve the task completion rate, we present a task scheduling model based on task migration and formulate the relevant problem as a Mixed Integer Non-linear Programming (MINLP) problem. To achieve a solution within a reasonable time complexity, we propose a Particle Swarm Optimization and Genetic Algorithm with a Rescheduling operator (PSOGAR). In PSOGAR, particles update their positions using a mating operator, while maintaining diversity by a mutation operator. In addition, a rescheduling operator is used to further improve the task completion rate. Finally, through simulation experiments, compare PSOGAR with state-of-the-art and classic algorithms. The experimental results show that PSOGAR can improve the task completion rate by 18–31% and can be applied to scenarios with tight task deadlines.</description><identifier>ISSN: 1386-7857</identifier><identifier>EISSN: 1573-7543</identifier><identifier>DOI: 10.1007/s10586-024-04341-6</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Communication ; Computation offloading ; Computer Communication Networks ; Computer Science ; Cooperation ; Edge computing ; Efficiency ; Energy consumption ; Genetic algorithms ; Heuristic ; Internet of Things ; Linear programming ; Mixed integer ; Mobile computing ; Nonlinear programming ; Operating Systems ; Optimization ; Particle swarm optimization ; Processor Architectures ; Rescheduling ; Resource scheduling ; Scheduling ; Task complexity ; Task scheduling ; Vehicles ; Wide area networks</subject><ispartof>Cluster computing, 2024-09, Vol.27 (6), p.7439-7454</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c270t-7142160bf28ddc6c4bbf103b64576d6a1b295d2d5ece673f1b50ff05078e01503</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10586-024-04341-6$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10586-024-04341-6$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Sang, Yongxuan</creatorcontrib><creatorcontrib>Wei, Jiangpo</creatorcontrib><creatorcontrib>Zhang, Zhifeng</creatorcontrib><creatorcontrib>Wang, Bo</creatorcontrib><title>A mobility-aware task scheduling by hybrid PSO and GA for mobile edge computing</title><title>Cluster computing</title><addtitle>Cluster Comput</addtitle><description>Mobile edge computing (MEC) is considered one of the key technologies for large-scale network services. Task scheduling helps to improve the task completion rate of MEC, by properly mapping tasks generated by devices onto MEC resources. However, the mobility of devices introduces complexities, potentially resulting in failed task offloading or unavailable task results. To tackle this issue, we propose a mobile-aware task scheduling scheme. We first model the trajectory of mobile devices and introduce a strategy for the fastest task offloading, coupled with an efficient result return method. Subsequently, to improve the task completion rate, we present a task scheduling model based on task migration and formulate the relevant problem as a Mixed Integer Non-linear Programming (MINLP) problem. To achieve a solution within a reasonable time complexity, we propose a Particle Swarm Optimization and Genetic Algorithm with a Rescheduling operator (PSOGAR). In PSOGAR, particles update their positions using a mating operator, while maintaining diversity by a mutation operator. In addition, a rescheduling operator is used to further improve the task completion rate. Finally, through simulation experiments, compare PSOGAR with state-of-the-art and classic algorithms. The experimental results show that PSOGAR can improve the task completion rate by 18–31% and can be applied to scenarios with tight task deadlines.</description><subject>Communication</subject><subject>Computation offloading</subject><subject>Computer Communication Networks</subject><subject>Computer Science</subject><subject>Cooperation</subject><subject>Edge computing</subject><subject>Efficiency</subject><subject>Energy consumption</subject><subject>Genetic algorithms</subject><subject>Heuristic</subject><subject>Internet of Things</subject><subject>Linear programming</subject><subject>Mixed integer</subject><subject>Mobile computing</subject><subject>Nonlinear programming</subject><subject>Operating Systems</subject><subject>Optimization</subject><subject>Particle swarm optimization</subject><subject>Processor Architectures</subject><subject>Rescheduling</subject><subject>Resource scheduling</subject><subject>Scheduling</subject><subject>Task complexity</subject><subject>Task scheduling</subject><subject>Vehicles</subject><subject>Wide area networks</subject><issn>1386-7857</issn><issn>1573-7543</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LAzEQhoMoWKt_wFPAc3SSbJLtsRStQqGCeg6br3Zru1uTXWT_vdEVvHmagXned-BB6JrCLQVQd4mCKCUBVhAoeEGJPEETKhQnShT8NO88n1Up1Dm6SGkHADPFZhO0nuNDa-p93Q2k-qyix12V3nGyW-_6fd1ssBnwdjCxdvj5ZY2rxuHlHIc2jjmPvdt4bNvDse8yfonOQrVP_up3TtHbw_3r4pGs1sunxXxFLFPQEUULRiWYwErnrLSFMYECN7IQSjpZUcNmwjEnvPVS8UCNgBBAgCo9UAF8im7G3mNsP3qfOr1r-9jkl5pnI1IxXqpMsZGysU0p-qCPsT5UcdAU9Lc4PYrTWZz-EadlDvExlDLcbHz8q_4n9QUnK28o</recordid><startdate>20240901</startdate><enddate>20240901</enddate><creator>Sang, Yongxuan</creator><creator>Wei, Jiangpo</creator><creator>Zhang, Zhifeng</creator><creator>Wang, Bo</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>JQ2</scope></search><sort><creationdate>20240901</creationdate><title>A mobility-aware task scheduling by hybrid PSO and GA for mobile edge computing</title><author>Sang, Yongxuan ; Wei, Jiangpo ; Zhang, Zhifeng ; Wang, Bo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c270t-7142160bf28ddc6c4bbf103b64576d6a1b295d2d5ece673f1b50ff05078e01503</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Communication</topic><topic>Computation offloading</topic><topic>Computer Communication Networks</topic><topic>Computer Science</topic><topic>Cooperation</topic><topic>Edge computing</topic><topic>Efficiency</topic><topic>Energy consumption</topic><topic>Genetic algorithms</topic><topic>Heuristic</topic><topic>Internet of Things</topic><topic>Linear programming</topic><topic>Mixed integer</topic><topic>Mobile computing</topic><topic>Nonlinear programming</topic><topic>Operating Systems</topic><topic>Optimization</topic><topic>Particle swarm optimization</topic><topic>Processor Architectures</topic><topic>Rescheduling</topic><topic>Resource scheduling</topic><topic>Scheduling</topic><topic>Task complexity</topic><topic>Task scheduling</topic><topic>Vehicles</topic><topic>Wide area networks</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sang, Yongxuan</creatorcontrib><creatorcontrib>Wei, Jiangpo</creatorcontrib><creatorcontrib>Zhang, Zhifeng</creatorcontrib><creatorcontrib>Wang, Bo</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Computer Science Collection</collection><jtitle>Cluster computing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sang, Yongxuan</au><au>Wei, Jiangpo</au><au>Zhang, Zhifeng</au><au>Wang, Bo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A mobility-aware task scheduling by hybrid PSO and GA for mobile edge computing</atitle><jtitle>Cluster computing</jtitle><stitle>Cluster Comput</stitle><date>2024-09-01</date><risdate>2024</risdate><volume>27</volume><issue>6</issue><spage>7439</spage><epage>7454</epage><pages>7439-7454</pages><issn>1386-7857</issn><eissn>1573-7543</eissn><abstract>Mobile edge computing (MEC) is considered one of the key technologies for large-scale network services. Task scheduling helps to improve the task completion rate of MEC, by properly mapping tasks generated by devices onto MEC resources. However, the mobility of devices introduces complexities, potentially resulting in failed task offloading or unavailable task results. To tackle this issue, we propose a mobile-aware task scheduling scheme. We first model the trajectory of mobile devices and introduce a strategy for the fastest task offloading, coupled with an efficient result return method. Subsequently, to improve the task completion rate, we present a task scheduling model based on task migration and formulate the relevant problem as a Mixed Integer Non-linear Programming (MINLP) problem. To achieve a solution within a reasonable time complexity, we propose a Particle Swarm Optimization and Genetic Algorithm with a Rescheduling operator (PSOGAR). In PSOGAR, particles update their positions using a mating operator, while maintaining diversity by a mutation operator. In addition, a rescheduling operator is used to further improve the task completion rate. Finally, through simulation experiments, compare PSOGAR with state-of-the-art and classic algorithms. The experimental results show that PSOGAR can improve the task completion rate by 18–31% and can be applied to scenarios with tight task deadlines.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10586-024-04341-6</doi><tpages>16</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1386-7857 |
ispartof | Cluster computing, 2024-09, Vol.27 (6), p.7439-7454 |
issn | 1386-7857 1573-7543 |
language | eng |
recordid | cdi_proquest_journals_3100672387 |
source | SpringerLink (Online service) |
subjects | Communication Computation offloading Computer Communication Networks Computer Science Cooperation Edge computing Efficiency Energy consumption Genetic algorithms Heuristic Internet of Things Linear programming Mixed integer Mobile computing Nonlinear programming Operating Systems Optimization Particle swarm optimization Processor Architectures Rescheduling Resource scheduling Scheduling Task complexity Task scheduling Vehicles Wide area networks |
title | A mobility-aware task scheduling by hybrid PSO and GA for mobile edge computing |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T07%3A46%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20mobility-aware%20task%20scheduling%20by%20hybrid%20PSO%20and%20GA%20for%20mobile%20edge%20computing&rft.jtitle=Cluster%20computing&rft.au=Sang,%20Yongxuan&rft.date=2024-09-01&rft.volume=27&rft.issue=6&rft.spage=7439&rft.epage=7454&rft.pages=7439-7454&rft.issn=1386-7857&rft.eissn=1573-7543&rft_id=info:doi/10.1007/s10586-024-04341-6&rft_dat=%3Cproquest_cross%3E3100672387%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3100672387&rft_id=info:pmid/&rfr_iscdi=true |