A Robustness-Enhanced Reconstruction Based on Discontinuity Feedback Factor for High-Order Finite Volume Scheme
In this paper, a robustness-enhanced reconstruction for the high-order finite volume scheme is constructed on the 2-D structured mesh, and both the high-order gas-kinetic scheme and the Lax-Friedrichs flux solver are considered to verify the effectiveness of this algorithm. The strategy of the succe...
Gespeichert in:
Veröffentlicht in: | Journal of scientific computing 2024-10, Vol.101 (1), p.20, Article 20 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 1 |
container_start_page | 20 |
container_title | Journal of scientific computing |
container_volume | 101 |
creator | Zhang, Hong Ji, Xing Zhao, Yue Ding, Yuan Xu, Kun |
description | In this paper, a robustness-enhanced reconstruction for the high-order finite volume scheme is constructed on the 2-D structured mesh, and both the high-order gas-kinetic scheme and the Lax-Friedrichs flux solver are considered to verify the effectiveness of this algorithm. The strategy of the successful weighted essentially non-oscillatory (WENO) reconstruction is adopted to select the smooth sub-stencils. However, there are cases where strong discontinuities exist in all sub-stencils of the WENO reconstruction, weakening its robustness. To improve the robustness of the algorithm in discontinuous regions in two-dimensional space, the hybrid reconstruction based on a combination of discontinuity feedback factor (Ji et al. in Int. J. Comput. Fluid Dyn. 35:485–509, 2021) and WENO reconstruction is developed to deal with the possible discontinuities. Numerical results from smooth to extreme cases have been presented, which validates that the new finite volume scheme is effective for robustness enhancement while maintaining high resolution compared with the WENO scheme. |
doi_str_mv | 10.1007/s10915-024-02655-6 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3100670694</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3100670694</sourcerecordid><originalsourceid>FETCH-LOGICAL-c200t-2faef752130258094febe0ebb4577f47478e800b5423a0414b84e22446148c0b3</originalsourceid><addsrcrecordid>eNp9kMtOxDAMRSMEEsPjB1hFYh1w0qRpl7zKICGNNDy2UZtxZwpMAkm64O8JFIkdC8uWfa8tH0JOOJxxAH0eOdRcMRAyR6kUK3fIjCtdMF3WfJfMoKoU01LLfXIQ4wsA1FUtZsRf0KXvxpgcxshu3KZ1Fld0ida7mMJo0-AdvWxjbubieoh5kAY3DumTNoirrrWvtGlt8oH2OebDesMWYYWBNoMbEtJn_zZukT7YDW7xiOz17VvE4998SJ6am8erObtf3N5dXdwzKwASE32LvVaCFyBUBbXssUPArpNK6z6_oSusADolRdGC5LKrJAohZcllZaErDsnptPc9-I8RYzIvfgwunzRFJlZqKGuZVWJS2eBjDNib9zBs2_BpOJhvsGYCazJY8wPWlNlUTKaYxW6N4W_1P64v_F567Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3100670694</pqid></control><display><type>article</type><title>A Robustness-Enhanced Reconstruction Based on Discontinuity Feedback Factor for High-Order Finite Volume Scheme</title><source>SpringerLink Journals</source><creator>Zhang, Hong ; Ji, Xing ; Zhao, Yue ; Ding, Yuan ; Xu, Kun</creator><creatorcontrib>Zhang, Hong ; Ji, Xing ; Zhao, Yue ; Ding, Yuan ; Xu, Kun</creatorcontrib><description>In this paper, a robustness-enhanced reconstruction for the high-order finite volume scheme is constructed on the 2-D structured mesh, and both the high-order gas-kinetic scheme and the Lax-Friedrichs flux solver are considered to verify the effectiveness of this algorithm. The strategy of the successful weighted essentially non-oscillatory (WENO) reconstruction is adopted to select the smooth sub-stencils. However, there are cases where strong discontinuities exist in all sub-stencils of the WENO reconstruction, weakening its robustness. To improve the robustness of the algorithm in discontinuous regions in two-dimensional space, the hybrid reconstruction based on a combination of discontinuity feedback factor (Ji et al. in Int. J. Comput. Fluid Dyn. 35:485–509, 2021) and WENO reconstruction is developed to deal with the possible discontinuities. Numerical results from smooth to extreme cases have been presented, which validates that the new finite volume scheme is effective for robustness enhancement while maintaining high resolution compared with the WENO scheme.</description><identifier>ISSN: 0885-7474</identifier><identifier>EISSN: 1573-7691</identifier><identifier>DOI: 10.1007/s10915-024-02655-6</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Accuracy ; Algorithms ; Computational Mathematics and Numerical Analysis ; Discontinuity ; Effectiveness ; Essentially non-oscillatory schemes ; Extreme values ; Feedback ; Finite volume method ; Mathematical and Computational Engineering ; Mathematical and Computational Physics ; Mathematics ; Mathematics and Statistics ; Navier-Stokes equations ; Numerical analysis ; Partial differential equations ; Reconstruction ; Robustness ; Stencils ; Theoretical</subject><ispartof>Journal of scientific computing, 2024-10, Vol.101 (1), p.20, Article 20</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c200t-2faef752130258094febe0ebb4577f47478e800b5423a0414b84e22446148c0b3</cites><orcidid>0000-0002-4841-7409</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10915-024-02655-6$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10915-024-02655-6$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Zhang, Hong</creatorcontrib><creatorcontrib>Ji, Xing</creatorcontrib><creatorcontrib>Zhao, Yue</creatorcontrib><creatorcontrib>Ding, Yuan</creatorcontrib><creatorcontrib>Xu, Kun</creatorcontrib><title>A Robustness-Enhanced Reconstruction Based on Discontinuity Feedback Factor for High-Order Finite Volume Scheme</title><title>Journal of scientific computing</title><addtitle>J Sci Comput</addtitle><description>In this paper, a robustness-enhanced reconstruction for the high-order finite volume scheme is constructed on the 2-D structured mesh, and both the high-order gas-kinetic scheme and the Lax-Friedrichs flux solver are considered to verify the effectiveness of this algorithm. The strategy of the successful weighted essentially non-oscillatory (WENO) reconstruction is adopted to select the smooth sub-stencils. However, there are cases where strong discontinuities exist in all sub-stencils of the WENO reconstruction, weakening its robustness. To improve the robustness of the algorithm in discontinuous regions in two-dimensional space, the hybrid reconstruction based on a combination of discontinuity feedback factor (Ji et al. in Int. J. Comput. Fluid Dyn. 35:485–509, 2021) and WENO reconstruction is developed to deal with the possible discontinuities. Numerical results from smooth to extreme cases have been presented, which validates that the new finite volume scheme is effective for robustness enhancement while maintaining high resolution compared with the WENO scheme.</description><subject>Accuracy</subject><subject>Algorithms</subject><subject>Computational Mathematics and Numerical Analysis</subject><subject>Discontinuity</subject><subject>Effectiveness</subject><subject>Essentially non-oscillatory schemes</subject><subject>Extreme values</subject><subject>Feedback</subject><subject>Finite volume method</subject><subject>Mathematical and Computational Engineering</subject><subject>Mathematical and Computational Physics</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Navier-Stokes equations</subject><subject>Numerical analysis</subject><subject>Partial differential equations</subject><subject>Reconstruction</subject><subject>Robustness</subject><subject>Stencils</subject><subject>Theoretical</subject><issn>0885-7474</issn><issn>1573-7691</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kMtOxDAMRSMEEsPjB1hFYh1w0qRpl7zKICGNNDy2UZtxZwpMAkm64O8JFIkdC8uWfa8tH0JOOJxxAH0eOdRcMRAyR6kUK3fIjCtdMF3WfJfMoKoU01LLfXIQ4wsA1FUtZsRf0KXvxpgcxshu3KZ1Fld0ida7mMJo0-AdvWxjbubieoh5kAY3DumTNoirrrWvtGlt8oH2OebDesMWYYWBNoMbEtJn_zZukT7YDW7xiOz17VvE4998SJ6am8erObtf3N5dXdwzKwASE32LvVaCFyBUBbXssUPArpNK6z6_oSusADolRdGC5LKrJAohZcllZaErDsnptPc9-I8RYzIvfgwunzRFJlZqKGuZVWJS2eBjDNib9zBs2_BpOJhvsGYCazJY8wPWlNlUTKaYxW6N4W_1P64v_F567Q</recordid><startdate>20241001</startdate><enddate>20241001</enddate><creator>Zhang, Hong</creator><creator>Ji, Xing</creator><creator>Zhao, Yue</creator><creator>Ding, Yuan</creator><creator>Xu, Kun</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>JQ2</scope><orcidid>https://orcid.org/0000-0002-4841-7409</orcidid></search><sort><creationdate>20241001</creationdate><title>A Robustness-Enhanced Reconstruction Based on Discontinuity Feedback Factor for High-Order Finite Volume Scheme</title><author>Zhang, Hong ; Ji, Xing ; Zhao, Yue ; Ding, Yuan ; Xu, Kun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c200t-2faef752130258094febe0ebb4577f47478e800b5423a0414b84e22446148c0b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Accuracy</topic><topic>Algorithms</topic><topic>Computational Mathematics and Numerical Analysis</topic><topic>Discontinuity</topic><topic>Effectiveness</topic><topic>Essentially non-oscillatory schemes</topic><topic>Extreme values</topic><topic>Feedback</topic><topic>Finite volume method</topic><topic>Mathematical and Computational Engineering</topic><topic>Mathematical and Computational Physics</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Navier-Stokes equations</topic><topic>Numerical analysis</topic><topic>Partial differential equations</topic><topic>Reconstruction</topic><topic>Robustness</topic><topic>Stencils</topic><topic>Theoretical</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Hong</creatorcontrib><creatorcontrib>Ji, Xing</creatorcontrib><creatorcontrib>Zhao, Yue</creatorcontrib><creatorcontrib>Ding, Yuan</creatorcontrib><creatorcontrib>Xu, Kun</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Computer Science Collection</collection><jtitle>Journal of scientific computing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Hong</au><au>Ji, Xing</au><au>Zhao, Yue</au><au>Ding, Yuan</au><au>Xu, Kun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Robustness-Enhanced Reconstruction Based on Discontinuity Feedback Factor for High-Order Finite Volume Scheme</atitle><jtitle>Journal of scientific computing</jtitle><stitle>J Sci Comput</stitle><date>2024-10-01</date><risdate>2024</risdate><volume>101</volume><issue>1</issue><spage>20</spage><pages>20-</pages><artnum>20</artnum><issn>0885-7474</issn><eissn>1573-7691</eissn><abstract>In this paper, a robustness-enhanced reconstruction for the high-order finite volume scheme is constructed on the 2-D structured mesh, and both the high-order gas-kinetic scheme and the Lax-Friedrichs flux solver are considered to verify the effectiveness of this algorithm. The strategy of the successful weighted essentially non-oscillatory (WENO) reconstruction is adopted to select the smooth sub-stencils. However, there are cases where strong discontinuities exist in all sub-stencils of the WENO reconstruction, weakening its robustness. To improve the robustness of the algorithm in discontinuous regions in two-dimensional space, the hybrid reconstruction based on a combination of discontinuity feedback factor (Ji et al. in Int. J. Comput. Fluid Dyn. 35:485–509, 2021) and WENO reconstruction is developed to deal with the possible discontinuities. Numerical results from smooth to extreme cases have been presented, which validates that the new finite volume scheme is effective for robustness enhancement while maintaining high resolution compared with the WENO scheme.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10915-024-02655-6</doi><orcidid>https://orcid.org/0000-0002-4841-7409</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0885-7474 |
ispartof | Journal of scientific computing, 2024-10, Vol.101 (1), p.20, Article 20 |
issn | 0885-7474 1573-7691 |
language | eng |
recordid | cdi_proquest_journals_3100670694 |
source | SpringerLink Journals |
subjects | Accuracy Algorithms Computational Mathematics and Numerical Analysis Discontinuity Effectiveness Essentially non-oscillatory schemes Extreme values Feedback Finite volume method Mathematical and Computational Engineering Mathematical and Computational Physics Mathematics Mathematics and Statistics Navier-Stokes equations Numerical analysis Partial differential equations Reconstruction Robustness Stencils Theoretical |
title | A Robustness-Enhanced Reconstruction Based on Discontinuity Feedback Factor for High-Order Finite Volume Scheme |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T07%3A38%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Robustness-Enhanced%20Reconstruction%20Based%20on%20Discontinuity%20Feedback%20Factor%20for%20High-Order%20Finite%20Volume%20Scheme&rft.jtitle=Journal%20of%20scientific%20computing&rft.au=Zhang,%20Hong&rft.date=2024-10-01&rft.volume=101&rft.issue=1&rft.spage=20&rft.pages=20-&rft.artnum=20&rft.issn=0885-7474&rft.eissn=1573-7691&rft_id=info:doi/10.1007/s10915-024-02655-6&rft_dat=%3Cproquest_cross%3E3100670694%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3100670694&rft_id=info:pmid/&rfr_iscdi=true |