Damped perturbations in inviscid shear flows: Non-resonant Landau damping in stable inflectional flows

We analyze the dynamics of small two-dimensional disturbances in stable plane-parallel inviscid shear flows under linear theory. Using a velocity profile Vx=U(y) with an inflection point but stable according to Fjørtoft's theorem, we illustrate that the continuum spectrum of van Kampen modes, p...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physics of fluids (1994) 2024-09, Vol.36 (9)
Hauptverfasser: Polyachenko, E. V., Shukhman, I. G.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 9
container_start_page
container_title Physics of fluids (1994)
container_volume 36
creator Polyachenko, E. V.
Shukhman, I. G.
description We analyze the dynamics of small two-dimensional disturbances in stable plane-parallel inviscid shear flows under linear theory. Using a velocity profile Vx=U(y) with an inflection point but stable according to Fjørtoft's theorem, we illustrate that the continuum spectrum of van Kampen modes, possessing real phase velocities c=ω/k, aggregates into Landau damping solutions or “quasi-modes,” which exhibit exponential decay. It was found that the real part of the complex phase velocity cL(k) of these solutions may lie outside the allowable range for van Kampen modes, suggesting a non-resonant damping mechanism for these quasi-modes. This conclusion was reached by solving the eigenvalue problem and observing the evolution of initial perturbations, calculated by directly solving the evolutionary equation for vorticity as well as by decomposing the initial disturbance into van Kampen modes. Landau damping of the total vorticity across the channel emerges as an intermediate stage before transitioning to power-law damping.
doi_str_mv 10.1063/5.0220210
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3100631099</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3100631099</sourcerecordid><originalsourceid>FETCH-LOGICAL-c182t-fb69a7bb10f2bb3e9c4cff735aa495994d28bd81842deecd8ba3dd71d3fd5b993</originalsourceid><addsrcrecordid>eNp9kMtKxEAQRRtRcBxd-AcBVwoZ-5F00u5kfELQja6b6pdmyCSxu6P49yaTWQsFVYtzL8VB6JzgFcGcXecrTCmmBB-gBcGlSAvO-eF0FzjlnJFjdBLCBmPMBOUL5O5g21uT9NbHwSuIddeGpG7H-a6Drk0SPi34xDXdT7hJXro29TZ0LbQxqaA1MCRmbKjbjykUIqjGjpdrrJ6qoJmTp-jIQRPs2X4v0fvD_dv6Ka1eH5_Xt1WqSUlj6hQXUChFsKNKMSt0pp0rWA6QiVyIzNBSmZKUGTXWalMqYMYUxDBnciUEW6KLubf33ddgQ5SbbvDjG0EygkdBBO-oy5nSvgvBWyd7X2_B_0qC5aRR5nKvcWSvZnaUEXd6_oH_ALvxc8Y</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3100631099</pqid></control><display><type>article</type><title>Damped perturbations in inviscid shear flows: Non-resonant Landau damping in stable inflectional flows</title><source>American Institute of Physics (AIP) Journals</source><creator>Polyachenko, E. V. ; Shukhman, I. G.</creator><creatorcontrib>Polyachenko, E. V. ; Shukhman, I. G.</creatorcontrib><description>We analyze the dynamics of small two-dimensional disturbances in stable plane-parallel inviscid shear flows under linear theory. Using a velocity profile Vx=U(y) with an inflection point but stable according to Fjørtoft's theorem, we illustrate that the continuum spectrum of van Kampen modes, possessing real phase velocities c=ω/k, aggregates into Landau damping solutions or “quasi-modes,” which exhibit exponential decay. It was found that the real part of the complex phase velocity cL(k) of these solutions may lie outside the allowable range for van Kampen modes, suggesting a non-resonant damping mechanism for these quasi-modes. This conclusion was reached by solving the eigenvalue problem and observing the evolution of initial perturbations, calculated by directly solving the evolutionary equation for vorticity as well as by decomposing the initial disturbance into van Kampen modes. Landau damping of the total vorticity across the channel emerges as an intermediate stage before transitioning to power-law damping.</description><identifier>ISSN: 1070-6631</identifier><identifier>EISSN: 1089-7666</identifier><identifier>DOI: 10.1063/5.0220210</identifier><identifier>CODEN: PHFLE6</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Dimensional stability ; Eigenvalues ; Landau damping ; Perturbation ; Phase velocity ; Shear flow ; Two dimensional analysis ; Two dimensional flow ; Velocity distribution ; Vorticity</subject><ispartof>Physics of fluids (1994), 2024-09, Vol.36 (9)</ispartof><rights>Author(s)</rights><rights>2024 Author(s). Published under an exclusive license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c182t-fb69a7bb10f2bb3e9c4cff735aa495994d28bd81842deecd8ba3dd71d3fd5b993</cites><orcidid>0000-0002-4596-1222 ; 0000-0002-6060-694X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,794,4512,27924,27925</link.rule.ids></links><search><creatorcontrib>Polyachenko, E. V.</creatorcontrib><creatorcontrib>Shukhman, I. G.</creatorcontrib><title>Damped perturbations in inviscid shear flows: Non-resonant Landau damping in stable inflectional flows</title><title>Physics of fluids (1994)</title><description>We analyze the dynamics of small two-dimensional disturbances in stable plane-parallel inviscid shear flows under linear theory. Using a velocity profile Vx=U(y) with an inflection point but stable according to Fjørtoft's theorem, we illustrate that the continuum spectrum of van Kampen modes, possessing real phase velocities c=ω/k, aggregates into Landau damping solutions or “quasi-modes,” which exhibit exponential decay. It was found that the real part of the complex phase velocity cL(k) of these solutions may lie outside the allowable range for van Kampen modes, suggesting a non-resonant damping mechanism for these quasi-modes. This conclusion was reached by solving the eigenvalue problem and observing the evolution of initial perturbations, calculated by directly solving the evolutionary equation for vorticity as well as by decomposing the initial disturbance into van Kampen modes. Landau damping of the total vorticity across the channel emerges as an intermediate stage before transitioning to power-law damping.</description><subject>Dimensional stability</subject><subject>Eigenvalues</subject><subject>Landau damping</subject><subject>Perturbation</subject><subject>Phase velocity</subject><subject>Shear flow</subject><subject>Two dimensional analysis</subject><subject>Two dimensional flow</subject><subject>Velocity distribution</subject><subject>Vorticity</subject><issn>1070-6631</issn><issn>1089-7666</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kMtKxEAQRRtRcBxd-AcBVwoZ-5F00u5kfELQja6b6pdmyCSxu6P49yaTWQsFVYtzL8VB6JzgFcGcXecrTCmmBB-gBcGlSAvO-eF0FzjlnJFjdBLCBmPMBOUL5O5g21uT9NbHwSuIddeGpG7H-a6Drk0SPi34xDXdT7hJXro29TZ0LbQxqaA1MCRmbKjbjykUIqjGjpdrrJ6qoJmTp-jIQRPs2X4v0fvD_dv6Ka1eH5_Xt1WqSUlj6hQXUChFsKNKMSt0pp0rWA6QiVyIzNBSmZKUGTXWalMqYMYUxDBnciUEW6KLubf33ddgQ5SbbvDjG0EygkdBBO-oy5nSvgvBWyd7X2_B_0qC5aRR5nKvcWSvZnaUEXd6_oH_ALvxc8Y</recordid><startdate>202409</startdate><enddate>202409</enddate><creator>Polyachenko, E. V.</creator><creator>Shukhman, I. G.</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-4596-1222</orcidid><orcidid>https://orcid.org/0000-0002-6060-694X</orcidid></search><sort><creationdate>202409</creationdate><title>Damped perturbations in inviscid shear flows: Non-resonant Landau damping in stable inflectional flows</title><author>Polyachenko, E. V. ; Shukhman, I. G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c182t-fb69a7bb10f2bb3e9c4cff735aa495994d28bd81842deecd8ba3dd71d3fd5b993</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Dimensional stability</topic><topic>Eigenvalues</topic><topic>Landau damping</topic><topic>Perturbation</topic><topic>Phase velocity</topic><topic>Shear flow</topic><topic>Two dimensional analysis</topic><topic>Two dimensional flow</topic><topic>Velocity distribution</topic><topic>Vorticity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Polyachenko, E. V.</creatorcontrib><creatorcontrib>Shukhman, I. G.</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Physics of fluids (1994)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Polyachenko, E. V.</au><au>Shukhman, I. G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Damped perturbations in inviscid shear flows: Non-resonant Landau damping in stable inflectional flows</atitle><jtitle>Physics of fluids (1994)</jtitle><date>2024-09</date><risdate>2024</risdate><volume>36</volume><issue>9</issue><issn>1070-6631</issn><eissn>1089-7666</eissn><coden>PHFLE6</coden><abstract>We analyze the dynamics of small two-dimensional disturbances in stable plane-parallel inviscid shear flows under linear theory. Using a velocity profile Vx=U(y) with an inflection point but stable according to Fjørtoft's theorem, we illustrate that the continuum spectrum of van Kampen modes, possessing real phase velocities c=ω/k, aggregates into Landau damping solutions or “quasi-modes,” which exhibit exponential decay. It was found that the real part of the complex phase velocity cL(k) of these solutions may lie outside the allowable range for van Kampen modes, suggesting a non-resonant damping mechanism for these quasi-modes. This conclusion was reached by solving the eigenvalue problem and observing the evolution of initial perturbations, calculated by directly solving the evolutionary equation for vorticity as well as by decomposing the initial disturbance into van Kampen modes. Landau damping of the total vorticity across the channel emerges as an intermediate stage before transitioning to power-law damping.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0220210</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-4596-1222</orcidid><orcidid>https://orcid.org/0000-0002-6060-694X</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1070-6631
ispartof Physics of fluids (1994), 2024-09, Vol.36 (9)
issn 1070-6631
1089-7666
language eng
recordid cdi_proquest_journals_3100631099
source American Institute of Physics (AIP) Journals
subjects Dimensional stability
Eigenvalues
Landau damping
Perturbation
Phase velocity
Shear flow
Two dimensional analysis
Two dimensional flow
Velocity distribution
Vorticity
title Damped perturbations in inviscid shear flows: Non-resonant Landau damping in stable inflectional flows
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T08%3A17%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Damped%20perturbations%20in%20inviscid%20shear%20flows:%20Non-resonant%20Landau%20damping%20in%20stable%20inflectional%20flows&rft.jtitle=Physics%20of%20fluids%20(1994)&rft.au=Polyachenko,%20E.%20V.&rft.date=2024-09&rft.volume=36&rft.issue=9&rft.issn=1070-6631&rft.eissn=1089-7666&rft.coden=PHFLE6&rft_id=info:doi/10.1063/5.0220210&rft_dat=%3Cproquest_cross%3E3100631099%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3100631099&rft_id=info:pmid/&rfr_iscdi=true