Damped perturbations in inviscid shear flows: Non-resonant Landau damping in stable inflectional flows
We analyze the dynamics of small two-dimensional disturbances in stable plane-parallel inviscid shear flows under linear theory. Using a velocity profile Vx=U(y) with an inflection point but stable according to Fjørtoft's theorem, we illustrate that the continuum spectrum of van Kampen modes, p...
Gespeichert in:
Veröffentlicht in: | Physics of fluids (1994) 2024-09, Vol.36 (9) |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 9 |
container_start_page | |
container_title | Physics of fluids (1994) |
container_volume | 36 |
creator | Polyachenko, E. V. Shukhman, I. G. |
description | We analyze the dynamics of small two-dimensional disturbances in stable plane-parallel inviscid shear flows under linear theory. Using a velocity profile Vx=U(y) with an inflection point but stable according to Fjørtoft's theorem, we illustrate that the continuum spectrum of van Kampen modes, possessing real phase velocities c=ω/k, aggregates into Landau damping solutions or “quasi-modes,” which exhibit exponential decay. It was found that the real part of the complex phase velocity cL(k) of these solutions may lie outside the allowable range for van Kampen modes, suggesting a non-resonant damping mechanism for these quasi-modes. This conclusion was reached by solving the eigenvalue problem and observing the evolution of initial perturbations, calculated by directly solving the evolutionary equation for vorticity as well as by decomposing the initial disturbance into van Kampen modes. Landau damping of the total vorticity across the channel emerges as an intermediate stage before transitioning to power-law damping. |
doi_str_mv | 10.1063/5.0220210 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3100631099</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3100631099</sourcerecordid><originalsourceid>FETCH-LOGICAL-c182t-fb69a7bb10f2bb3e9c4cff735aa495994d28bd81842deecd8ba3dd71d3fd5b993</originalsourceid><addsrcrecordid>eNp9kMtKxEAQRRtRcBxd-AcBVwoZ-5F00u5kfELQja6b6pdmyCSxu6P49yaTWQsFVYtzL8VB6JzgFcGcXecrTCmmBB-gBcGlSAvO-eF0FzjlnJFjdBLCBmPMBOUL5O5g21uT9NbHwSuIddeGpG7H-a6Drk0SPi34xDXdT7hJXro29TZ0LbQxqaA1MCRmbKjbjykUIqjGjpdrrJ6qoJmTp-jIQRPs2X4v0fvD_dv6Ka1eH5_Xt1WqSUlj6hQXUChFsKNKMSt0pp0rWA6QiVyIzNBSmZKUGTXWalMqYMYUxDBnciUEW6KLubf33ddgQ5SbbvDjG0EygkdBBO-oy5nSvgvBWyd7X2_B_0qC5aRR5nKvcWSvZnaUEXd6_oH_ALvxc8Y</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3100631099</pqid></control><display><type>article</type><title>Damped perturbations in inviscid shear flows: Non-resonant Landau damping in stable inflectional flows</title><source>American Institute of Physics (AIP) Journals</source><creator>Polyachenko, E. V. ; Shukhman, I. G.</creator><creatorcontrib>Polyachenko, E. V. ; Shukhman, I. G.</creatorcontrib><description>We analyze the dynamics of small two-dimensional disturbances in stable plane-parallel inviscid shear flows under linear theory. Using a velocity profile Vx=U(y) with an inflection point but stable according to Fjørtoft's theorem, we illustrate that the continuum spectrum of van Kampen modes, possessing real phase velocities c=ω/k, aggregates into Landau damping solutions or “quasi-modes,” which exhibit exponential decay. It was found that the real part of the complex phase velocity cL(k) of these solutions may lie outside the allowable range for van Kampen modes, suggesting a non-resonant damping mechanism for these quasi-modes. This conclusion was reached by solving the eigenvalue problem and observing the evolution of initial perturbations, calculated by directly solving the evolutionary equation for vorticity as well as by decomposing the initial disturbance into van Kampen modes. Landau damping of the total vorticity across the channel emerges as an intermediate stage before transitioning to power-law damping.</description><identifier>ISSN: 1070-6631</identifier><identifier>EISSN: 1089-7666</identifier><identifier>DOI: 10.1063/5.0220210</identifier><identifier>CODEN: PHFLE6</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Dimensional stability ; Eigenvalues ; Landau damping ; Perturbation ; Phase velocity ; Shear flow ; Two dimensional analysis ; Two dimensional flow ; Velocity distribution ; Vorticity</subject><ispartof>Physics of fluids (1994), 2024-09, Vol.36 (9)</ispartof><rights>Author(s)</rights><rights>2024 Author(s). Published under an exclusive license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c182t-fb69a7bb10f2bb3e9c4cff735aa495994d28bd81842deecd8ba3dd71d3fd5b993</cites><orcidid>0000-0002-4596-1222 ; 0000-0002-6060-694X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,794,4512,27924,27925</link.rule.ids></links><search><creatorcontrib>Polyachenko, E. V.</creatorcontrib><creatorcontrib>Shukhman, I. G.</creatorcontrib><title>Damped perturbations in inviscid shear flows: Non-resonant Landau damping in stable inflectional flows</title><title>Physics of fluids (1994)</title><description>We analyze the dynamics of small two-dimensional disturbances in stable plane-parallel inviscid shear flows under linear theory. Using a velocity profile Vx=U(y) with an inflection point but stable according to Fjørtoft's theorem, we illustrate that the continuum spectrum of van Kampen modes, possessing real phase velocities c=ω/k, aggregates into Landau damping solutions or “quasi-modes,” which exhibit exponential decay. It was found that the real part of the complex phase velocity cL(k) of these solutions may lie outside the allowable range for van Kampen modes, suggesting a non-resonant damping mechanism for these quasi-modes. This conclusion was reached by solving the eigenvalue problem and observing the evolution of initial perturbations, calculated by directly solving the evolutionary equation for vorticity as well as by decomposing the initial disturbance into van Kampen modes. Landau damping of the total vorticity across the channel emerges as an intermediate stage before transitioning to power-law damping.</description><subject>Dimensional stability</subject><subject>Eigenvalues</subject><subject>Landau damping</subject><subject>Perturbation</subject><subject>Phase velocity</subject><subject>Shear flow</subject><subject>Two dimensional analysis</subject><subject>Two dimensional flow</subject><subject>Velocity distribution</subject><subject>Vorticity</subject><issn>1070-6631</issn><issn>1089-7666</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kMtKxEAQRRtRcBxd-AcBVwoZ-5F00u5kfELQja6b6pdmyCSxu6P49yaTWQsFVYtzL8VB6JzgFcGcXecrTCmmBB-gBcGlSAvO-eF0FzjlnJFjdBLCBmPMBOUL5O5g21uT9NbHwSuIddeGpG7H-a6Drk0SPi34xDXdT7hJXro29TZ0LbQxqaA1MCRmbKjbjykUIqjGjpdrrJ6qoJmTp-jIQRPs2X4v0fvD_dv6Ka1eH5_Xt1WqSUlj6hQXUChFsKNKMSt0pp0rWA6QiVyIzNBSmZKUGTXWalMqYMYUxDBnciUEW6KLubf33ddgQ5SbbvDjG0EygkdBBO-oy5nSvgvBWyd7X2_B_0qC5aRR5nKvcWSvZnaUEXd6_oH_ALvxc8Y</recordid><startdate>202409</startdate><enddate>202409</enddate><creator>Polyachenko, E. V.</creator><creator>Shukhman, I. G.</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-4596-1222</orcidid><orcidid>https://orcid.org/0000-0002-6060-694X</orcidid></search><sort><creationdate>202409</creationdate><title>Damped perturbations in inviscid shear flows: Non-resonant Landau damping in stable inflectional flows</title><author>Polyachenko, E. V. ; Shukhman, I. G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c182t-fb69a7bb10f2bb3e9c4cff735aa495994d28bd81842deecd8ba3dd71d3fd5b993</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Dimensional stability</topic><topic>Eigenvalues</topic><topic>Landau damping</topic><topic>Perturbation</topic><topic>Phase velocity</topic><topic>Shear flow</topic><topic>Two dimensional analysis</topic><topic>Two dimensional flow</topic><topic>Velocity distribution</topic><topic>Vorticity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Polyachenko, E. V.</creatorcontrib><creatorcontrib>Shukhman, I. G.</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Physics of fluids (1994)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Polyachenko, E. V.</au><au>Shukhman, I. G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Damped perturbations in inviscid shear flows: Non-resonant Landau damping in stable inflectional flows</atitle><jtitle>Physics of fluids (1994)</jtitle><date>2024-09</date><risdate>2024</risdate><volume>36</volume><issue>9</issue><issn>1070-6631</issn><eissn>1089-7666</eissn><coden>PHFLE6</coden><abstract>We analyze the dynamics of small two-dimensional disturbances in stable plane-parallel inviscid shear flows under linear theory. Using a velocity profile Vx=U(y) with an inflection point but stable according to Fjørtoft's theorem, we illustrate that the continuum spectrum of van Kampen modes, possessing real phase velocities c=ω/k, aggregates into Landau damping solutions or “quasi-modes,” which exhibit exponential decay. It was found that the real part of the complex phase velocity cL(k) of these solutions may lie outside the allowable range for van Kampen modes, suggesting a non-resonant damping mechanism for these quasi-modes. This conclusion was reached by solving the eigenvalue problem and observing the evolution of initial perturbations, calculated by directly solving the evolutionary equation for vorticity as well as by decomposing the initial disturbance into van Kampen modes. Landau damping of the total vorticity across the channel emerges as an intermediate stage before transitioning to power-law damping.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0220210</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-4596-1222</orcidid><orcidid>https://orcid.org/0000-0002-6060-694X</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1070-6631 |
ispartof | Physics of fluids (1994), 2024-09, Vol.36 (9) |
issn | 1070-6631 1089-7666 |
language | eng |
recordid | cdi_proquest_journals_3100631099 |
source | American Institute of Physics (AIP) Journals |
subjects | Dimensional stability Eigenvalues Landau damping Perturbation Phase velocity Shear flow Two dimensional analysis Two dimensional flow Velocity distribution Vorticity |
title | Damped perturbations in inviscid shear flows: Non-resonant Landau damping in stable inflectional flows |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T08%3A17%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Damped%20perturbations%20in%20inviscid%20shear%20flows:%20Non-resonant%20Landau%20damping%20in%20stable%20inflectional%20flows&rft.jtitle=Physics%20of%20fluids%20(1994)&rft.au=Polyachenko,%20E.%20V.&rft.date=2024-09&rft.volume=36&rft.issue=9&rft.issn=1070-6631&rft.eissn=1089-7666&rft.coden=PHFLE6&rft_id=info:doi/10.1063/5.0220210&rft_dat=%3Cproquest_cross%3E3100631099%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3100631099&rft_id=info:pmid/&rfr_iscdi=true |