Epitaxial growth of rutile GeO2 via MOCVD
Rutile germanium dioxide (r-GeO2) has been identified as an ultrawide bandgap semiconductor recently, featuring a bandgap of 4.68 eV—comparable to Ga2O3—but offering bipolar dopability, higher electron mobility, higher thermal conductivity, and higher Baliga figure of merit (BFOM). These superior pr...
Gespeichert in:
Veröffentlicht in: | Applied physics letters 2024-09, Vol.125 (10) |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 10 |
container_start_page | |
container_title | Applied physics letters |
container_volume | 125 |
creator | Rahaman, Imteaz Duersch, Bobby G. Ellis, Hunter D. Scarpulla, Michael A. Fu, Kai |
description | Rutile germanium dioxide (r-GeO2) has been identified as an ultrawide bandgap semiconductor recently, featuring a bandgap of 4.68 eV—comparable to Ga2O3—but offering bipolar dopability, higher electron mobility, higher thermal conductivity, and higher Baliga figure of merit (BFOM). These superior properties position GeO2 as a promising material for various semiconductor applications. However, the epitaxial growth of r-GeO2, particularly in its most advantageous rutile polymorph, is still at an early stage. This work explores the growth of r-GeO2 using metal-organic chemical vapor deposition (MOCVD) on an r-TiO2 (001) substrate, utilizing tetraethyl germane as the precursor. Our investigations reveal that higher growth temperatures significantly enhance crystalline quality, achieving a full width at half maximum of 0.181° at 925 °C, compared to 0.54° at 840 °C and amorphous structures at 725 °C. Additionally, we found that longer growth durations increase surface roughness due to the formation of faceted crystals. Meanwhile, adjusting the susceptor rotation speed from 300 to 170 RPM plays a crucial role in optimizing crystalline quality, effectively reducing surface roughness by approximately 15 times. This study offers a foundational guide for optimizing MOCVD growth conditions of r-GeO2 films, emphasizing the crucial need for precise control over deposition temperature and rotation speed to enhance adatom mobility and effectively minimize the boundary layer thickness. |
doi_str_mv | 10.1063/5.0226661 |
format | Article |
fullrecord | <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_proquest_journals_3100631026</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3100631026</sourcerecordid><originalsourceid>FETCH-LOGICAL-c217t-512538f8f6d635b2641c6d5174b2cc9703c52e3c170e612b57a6f93a70256ad73</originalsourceid><addsrcrecordid>eNp90MFKw0AQBuBFFIzVg28Q8FQhdWa3O5scpdYqVHJRr8tms9GU2MTd1OrbG0nPnoaBjxn-n7FLhBkCiRs5A86JCI9YhKBUIhDTYxYBgEgok3jKzkLYDKvkQkRsuuzq3nzXponffLvv3-O2iv2urxsXr1zO46_axE_54vXunJ1Upgnu4jAn7OV--bx4SNb56nFxu04sR9UnErkUaZVWVJKQBac5WiolqnnBrc0UCCu5ExYVOEJeSGWoyoRRwCWZUokJuxrvdr793LnQ602789vhpRYIQ0YEToOajsr6NgTvKt35-sP4H42g_5rQUh-aGOz1aIMdsvZ1u_0H_wI-ilkc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3100631026</pqid></control><display><type>article</type><title>Epitaxial growth of rutile GeO2 via MOCVD</title><source>AIP Journals Complete</source><creator>Rahaman, Imteaz ; Duersch, Bobby G. ; Ellis, Hunter D. ; Scarpulla, Michael A. ; Fu, Kai</creator><creatorcontrib>Rahaman, Imteaz ; Duersch, Bobby G. ; Ellis, Hunter D. ; Scarpulla, Michael A. ; Fu, Kai</creatorcontrib><description>Rutile germanium dioxide (r-GeO2) has been identified as an ultrawide bandgap semiconductor recently, featuring a bandgap of 4.68 eV—comparable to Ga2O3—but offering bipolar dopability, higher electron mobility, higher thermal conductivity, and higher Baliga figure of merit (BFOM). These superior properties position GeO2 as a promising material for various semiconductor applications. However, the epitaxial growth of r-GeO2, particularly in its most advantageous rutile polymorph, is still at an early stage. This work explores the growth of r-GeO2 using metal-organic chemical vapor deposition (MOCVD) on an r-TiO2 (001) substrate, utilizing tetraethyl germane as the precursor. Our investigations reveal that higher growth temperatures significantly enhance crystalline quality, achieving a full width at half maximum of 0.181° at 925 °C, compared to 0.54° at 840 °C and amorphous structures at 725 °C. Additionally, we found that longer growth durations increase surface roughness due to the formation of faceted crystals. Meanwhile, adjusting the susceptor rotation speed from 300 to 170 RPM plays a crucial role in optimizing crystalline quality, effectively reducing surface roughness by approximately 15 times. This study offers a foundational guide for optimizing MOCVD growth conditions of r-GeO2 films, emphasizing the crucial need for precise control over deposition temperature and rotation speed to enhance adatom mobility and effectively minimize the boundary layer thickness.</description><identifier>ISSN: 0003-6951</identifier><identifier>EISSN: 1077-3118</identifier><identifier>DOI: 10.1063/5.0226661</identifier><identifier>CODEN: APPLAB</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Boundary layer thickness ; Crystal growth ; Electron mobility ; Epitaxial growth ; Figure of merit ; Gallium oxides ; Germanium ; Germanium oxides ; Metalorganic chemical vapor deposition ; Organic chemicals ; Organic chemistry ; Rotation ; Rutile ; Substrates ; Surface roughness ; Thermal conductivity ; Titanium dioxide ; Wide bandgap semiconductors</subject><ispartof>Applied physics letters, 2024-09, Vol.125 (10)</ispartof><rights>Author(s)</rights><rights>2024 Author(s). Published under an exclusive license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c217t-512538f8f6d635b2641c6d5174b2cc9703c52e3c170e612b57a6f93a70256ad73</cites><orcidid>0000-0002-8127-3291 ; 0000-0002-9405-7512 ; 0000-0003-0226-5240 ; 0000-0002-6084-6839 ; 0000-0002-2567-0559</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/apl/article-lookup/doi/10.1063/5.0226661$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>314,780,784,794,4512,27924,27925,76384</link.rule.ids></links><search><creatorcontrib>Rahaman, Imteaz</creatorcontrib><creatorcontrib>Duersch, Bobby G.</creatorcontrib><creatorcontrib>Ellis, Hunter D.</creatorcontrib><creatorcontrib>Scarpulla, Michael A.</creatorcontrib><creatorcontrib>Fu, Kai</creatorcontrib><title>Epitaxial growth of rutile GeO2 via MOCVD</title><title>Applied physics letters</title><description>Rutile germanium dioxide (r-GeO2) has been identified as an ultrawide bandgap semiconductor recently, featuring a bandgap of 4.68 eV—comparable to Ga2O3—but offering bipolar dopability, higher electron mobility, higher thermal conductivity, and higher Baliga figure of merit (BFOM). These superior properties position GeO2 as a promising material for various semiconductor applications. However, the epitaxial growth of r-GeO2, particularly in its most advantageous rutile polymorph, is still at an early stage. This work explores the growth of r-GeO2 using metal-organic chemical vapor deposition (MOCVD) on an r-TiO2 (001) substrate, utilizing tetraethyl germane as the precursor. Our investigations reveal that higher growth temperatures significantly enhance crystalline quality, achieving a full width at half maximum of 0.181° at 925 °C, compared to 0.54° at 840 °C and amorphous structures at 725 °C. Additionally, we found that longer growth durations increase surface roughness due to the formation of faceted crystals. Meanwhile, adjusting the susceptor rotation speed from 300 to 170 RPM plays a crucial role in optimizing crystalline quality, effectively reducing surface roughness by approximately 15 times. This study offers a foundational guide for optimizing MOCVD growth conditions of r-GeO2 films, emphasizing the crucial need for precise control over deposition temperature and rotation speed to enhance adatom mobility and effectively minimize the boundary layer thickness.</description><subject>Boundary layer thickness</subject><subject>Crystal growth</subject><subject>Electron mobility</subject><subject>Epitaxial growth</subject><subject>Figure of merit</subject><subject>Gallium oxides</subject><subject>Germanium</subject><subject>Germanium oxides</subject><subject>Metalorganic chemical vapor deposition</subject><subject>Organic chemicals</subject><subject>Organic chemistry</subject><subject>Rotation</subject><subject>Rutile</subject><subject>Substrates</subject><subject>Surface roughness</subject><subject>Thermal conductivity</subject><subject>Titanium dioxide</subject><subject>Wide bandgap semiconductors</subject><issn>0003-6951</issn><issn>1077-3118</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp90MFKw0AQBuBFFIzVg28Q8FQhdWa3O5scpdYqVHJRr8tms9GU2MTd1OrbG0nPnoaBjxn-n7FLhBkCiRs5A86JCI9YhKBUIhDTYxYBgEgok3jKzkLYDKvkQkRsuuzq3nzXponffLvv3-O2iv2urxsXr1zO46_axE_54vXunJ1Upgnu4jAn7OV--bx4SNb56nFxu04sR9UnErkUaZVWVJKQBac5WiolqnnBrc0UCCu5ExYVOEJeSGWoyoRRwCWZUokJuxrvdr793LnQ602789vhpRYIQ0YEToOajsr6NgTvKt35-sP4H42g_5rQUh-aGOz1aIMdsvZ1u_0H_wI-ilkc</recordid><startdate>20240902</startdate><enddate>20240902</enddate><creator>Rahaman, Imteaz</creator><creator>Duersch, Bobby G.</creator><creator>Ellis, Hunter D.</creator><creator>Scarpulla, Michael A.</creator><creator>Fu, Kai</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-8127-3291</orcidid><orcidid>https://orcid.org/0000-0002-9405-7512</orcidid><orcidid>https://orcid.org/0000-0003-0226-5240</orcidid><orcidid>https://orcid.org/0000-0002-6084-6839</orcidid><orcidid>https://orcid.org/0000-0002-2567-0559</orcidid></search><sort><creationdate>20240902</creationdate><title>Epitaxial growth of rutile GeO2 via MOCVD</title><author>Rahaman, Imteaz ; Duersch, Bobby G. ; Ellis, Hunter D. ; Scarpulla, Michael A. ; Fu, Kai</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c217t-512538f8f6d635b2641c6d5174b2cc9703c52e3c170e612b57a6f93a70256ad73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Boundary layer thickness</topic><topic>Crystal growth</topic><topic>Electron mobility</topic><topic>Epitaxial growth</topic><topic>Figure of merit</topic><topic>Gallium oxides</topic><topic>Germanium</topic><topic>Germanium oxides</topic><topic>Metalorganic chemical vapor deposition</topic><topic>Organic chemicals</topic><topic>Organic chemistry</topic><topic>Rotation</topic><topic>Rutile</topic><topic>Substrates</topic><topic>Surface roughness</topic><topic>Thermal conductivity</topic><topic>Titanium dioxide</topic><topic>Wide bandgap semiconductors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rahaman, Imteaz</creatorcontrib><creatorcontrib>Duersch, Bobby G.</creatorcontrib><creatorcontrib>Ellis, Hunter D.</creatorcontrib><creatorcontrib>Scarpulla, Michael A.</creatorcontrib><creatorcontrib>Fu, Kai</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Applied physics letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rahaman, Imteaz</au><au>Duersch, Bobby G.</au><au>Ellis, Hunter D.</au><au>Scarpulla, Michael A.</au><au>Fu, Kai</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Epitaxial growth of rutile GeO2 via MOCVD</atitle><jtitle>Applied physics letters</jtitle><date>2024-09-02</date><risdate>2024</risdate><volume>125</volume><issue>10</issue><issn>0003-6951</issn><eissn>1077-3118</eissn><coden>APPLAB</coden><abstract>Rutile germanium dioxide (r-GeO2) has been identified as an ultrawide bandgap semiconductor recently, featuring a bandgap of 4.68 eV—comparable to Ga2O3—but offering bipolar dopability, higher electron mobility, higher thermal conductivity, and higher Baliga figure of merit (BFOM). These superior properties position GeO2 as a promising material for various semiconductor applications. However, the epitaxial growth of r-GeO2, particularly in its most advantageous rutile polymorph, is still at an early stage. This work explores the growth of r-GeO2 using metal-organic chemical vapor deposition (MOCVD) on an r-TiO2 (001) substrate, utilizing tetraethyl germane as the precursor. Our investigations reveal that higher growth temperatures significantly enhance crystalline quality, achieving a full width at half maximum of 0.181° at 925 °C, compared to 0.54° at 840 °C and amorphous structures at 725 °C. Additionally, we found that longer growth durations increase surface roughness due to the formation of faceted crystals. Meanwhile, adjusting the susceptor rotation speed from 300 to 170 RPM plays a crucial role in optimizing crystalline quality, effectively reducing surface roughness by approximately 15 times. This study offers a foundational guide for optimizing MOCVD growth conditions of r-GeO2 films, emphasizing the crucial need for precise control over deposition temperature and rotation speed to enhance adatom mobility and effectively minimize the boundary layer thickness.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0226661</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-8127-3291</orcidid><orcidid>https://orcid.org/0000-0002-9405-7512</orcidid><orcidid>https://orcid.org/0000-0003-0226-5240</orcidid><orcidid>https://orcid.org/0000-0002-6084-6839</orcidid><orcidid>https://orcid.org/0000-0002-2567-0559</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0003-6951 |
ispartof | Applied physics letters, 2024-09, Vol.125 (10) |
issn | 0003-6951 1077-3118 |
language | eng |
recordid | cdi_proquest_journals_3100631026 |
source | AIP Journals Complete |
subjects | Boundary layer thickness Crystal growth Electron mobility Epitaxial growth Figure of merit Gallium oxides Germanium Germanium oxides Metalorganic chemical vapor deposition Organic chemicals Organic chemistry Rotation Rutile Substrates Surface roughness Thermal conductivity Titanium dioxide Wide bandgap semiconductors |
title | Epitaxial growth of rutile GeO2 via MOCVD |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T03%3A42%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Epitaxial%20growth%20of%20rutile%20GeO2%20via%20MOCVD&rft.jtitle=Applied%20physics%20letters&rft.au=Rahaman,%20Imteaz&rft.date=2024-09-02&rft.volume=125&rft.issue=10&rft.issn=0003-6951&rft.eissn=1077-3118&rft.coden=APPLAB&rft_id=info:doi/10.1063/5.0226661&rft_dat=%3Cproquest_scita%3E3100631026%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3100631026&rft_id=info:pmid/&rfr_iscdi=true |