Epitaxial growth of rutile GeO2 via MOCVD

Rutile germanium dioxide (r-GeO2) has been identified as an ultrawide bandgap semiconductor recently, featuring a bandgap of 4.68 eV—comparable to Ga2O3—but offering bipolar dopability, higher electron mobility, higher thermal conductivity, and higher Baliga figure of merit (BFOM). These superior pr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied physics letters 2024-09, Vol.125 (10)
Hauptverfasser: Rahaman, Imteaz, Duersch, Bobby G., Ellis, Hunter D., Scarpulla, Michael A., Fu, Kai
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 10
container_start_page
container_title Applied physics letters
container_volume 125
creator Rahaman, Imteaz
Duersch, Bobby G.
Ellis, Hunter D.
Scarpulla, Michael A.
Fu, Kai
description Rutile germanium dioxide (r-GeO2) has been identified as an ultrawide bandgap semiconductor recently, featuring a bandgap of 4.68 eV—comparable to Ga2O3—but offering bipolar dopability, higher electron mobility, higher thermal conductivity, and higher Baliga figure of merit (BFOM). These superior properties position GeO2 as a promising material for various semiconductor applications. However, the epitaxial growth of r-GeO2, particularly in its most advantageous rutile polymorph, is still at an early stage. This work explores the growth of r-GeO2 using metal-organic chemical vapor deposition (MOCVD) on an r-TiO2 (001) substrate, utilizing tetraethyl germane as the precursor. Our investigations reveal that higher growth temperatures significantly enhance crystalline quality, achieving a full width at half maximum of 0.181° at 925 °C, compared to 0.54° at 840 °C and amorphous structures at 725 °C. Additionally, we found that longer growth durations increase surface roughness due to the formation of faceted crystals. Meanwhile, adjusting the susceptor rotation speed from 300 to 170 RPM plays a crucial role in optimizing crystalline quality, effectively reducing surface roughness by approximately 15 times. This study offers a foundational guide for optimizing MOCVD growth conditions of r-GeO2 films, emphasizing the crucial need for precise control over deposition temperature and rotation speed to enhance adatom mobility and effectively minimize the boundary layer thickness.
doi_str_mv 10.1063/5.0226661
format Article
fullrecord <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_proquest_journals_3100631026</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3100631026</sourcerecordid><originalsourceid>FETCH-LOGICAL-c217t-512538f8f6d635b2641c6d5174b2cc9703c52e3c170e612b57a6f93a70256ad73</originalsourceid><addsrcrecordid>eNp90MFKw0AQBuBFFIzVg28Q8FQhdWa3O5scpdYqVHJRr8tms9GU2MTd1OrbG0nPnoaBjxn-n7FLhBkCiRs5A86JCI9YhKBUIhDTYxYBgEgok3jKzkLYDKvkQkRsuuzq3nzXponffLvv3-O2iv2urxsXr1zO46_axE_54vXunJ1Upgnu4jAn7OV--bx4SNb56nFxu04sR9UnErkUaZVWVJKQBac5WiolqnnBrc0UCCu5ExYVOEJeSGWoyoRRwCWZUokJuxrvdr793LnQ602789vhpRYIQ0YEToOajsr6NgTvKt35-sP4H42g_5rQUh-aGOz1aIMdsvZ1u_0H_wI-ilkc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3100631026</pqid></control><display><type>article</type><title>Epitaxial growth of rutile GeO2 via MOCVD</title><source>AIP Journals Complete</source><creator>Rahaman, Imteaz ; Duersch, Bobby G. ; Ellis, Hunter D. ; Scarpulla, Michael A. ; Fu, Kai</creator><creatorcontrib>Rahaman, Imteaz ; Duersch, Bobby G. ; Ellis, Hunter D. ; Scarpulla, Michael A. ; Fu, Kai</creatorcontrib><description>Rutile germanium dioxide (r-GeO2) has been identified as an ultrawide bandgap semiconductor recently, featuring a bandgap of 4.68 eV—comparable to Ga2O3—but offering bipolar dopability, higher electron mobility, higher thermal conductivity, and higher Baliga figure of merit (BFOM). These superior properties position GeO2 as a promising material for various semiconductor applications. However, the epitaxial growth of r-GeO2, particularly in its most advantageous rutile polymorph, is still at an early stage. This work explores the growth of r-GeO2 using metal-organic chemical vapor deposition (MOCVD) on an r-TiO2 (001) substrate, utilizing tetraethyl germane as the precursor. Our investigations reveal that higher growth temperatures significantly enhance crystalline quality, achieving a full width at half maximum of 0.181° at 925 °C, compared to 0.54° at 840 °C and amorphous structures at 725 °C. Additionally, we found that longer growth durations increase surface roughness due to the formation of faceted crystals. Meanwhile, adjusting the susceptor rotation speed from 300 to 170 RPM plays a crucial role in optimizing crystalline quality, effectively reducing surface roughness by approximately 15 times. This study offers a foundational guide for optimizing MOCVD growth conditions of r-GeO2 films, emphasizing the crucial need for precise control over deposition temperature and rotation speed to enhance adatom mobility and effectively minimize the boundary layer thickness.</description><identifier>ISSN: 0003-6951</identifier><identifier>EISSN: 1077-3118</identifier><identifier>DOI: 10.1063/5.0226661</identifier><identifier>CODEN: APPLAB</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Boundary layer thickness ; Crystal growth ; Electron mobility ; Epitaxial growth ; Figure of merit ; Gallium oxides ; Germanium ; Germanium oxides ; Metalorganic chemical vapor deposition ; Organic chemicals ; Organic chemistry ; Rotation ; Rutile ; Substrates ; Surface roughness ; Thermal conductivity ; Titanium dioxide ; Wide bandgap semiconductors</subject><ispartof>Applied physics letters, 2024-09, Vol.125 (10)</ispartof><rights>Author(s)</rights><rights>2024 Author(s). Published under an exclusive license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c217t-512538f8f6d635b2641c6d5174b2cc9703c52e3c170e612b57a6f93a70256ad73</cites><orcidid>0000-0002-8127-3291 ; 0000-0002-9405-7512 ; 0000-0003-0226-5240 ; 0000-0002-6084-6839 ; 0000-0002-2567-0559</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/apl/article-lookup/doi/10.1063/5.0226661$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>314,780,784,794,4512,27924,27925,76384</link.rule.ids></links><search><creatorcontrib>Rahaman, Imteaz</creatorcontrib><creatorcontrib>Duersch, Bobby G.</creatorcontrib><creatorcontrib>Ellis, Hunter D.</creatorcontrib><creatorcontrib>Scarpulla, Michael A.</creatorcontrib><creatorcontrib>Fu, Kai</creatorcontrib><title>Epitaxial growth of rutile GeO2 via MOCVD</title><title>Applied physics letters</title><description>Rutile germanium dioxide (r-GeO2) has been identified as an ultrawide bandgap semiconductor recently, featuring a bandgap of 4.68 eV—comparable to Ga2O3—but offering bipolar dopability, higher electron mobility, higher thermal conductivity, and higher Baliga figure of merit (BFOM). These superior properties position GeO2 as a promising material for various semiconductor applications. However, the epitaxial growth of r-GeO2, particularly in its most advantageous rutile polymorph, is still at an early stage. This work explores the growth of r-GeO2 using metal-organic chemical vapor deposition (MOCVD) on an r-TiO2 (001) substrate, utilizing tetraethyl germane as the precursor. Our investigations reveal that higher growth temperatures significantly enhance crystalline quality, achieving a full width at half maximum of 0.181° at 925 °C, compared to 0.54° at 840 °C and amorphous structures at 725 °C. Additionally, we found that longer growth durations increase surface roughness due to the formation of faceted crystals. Meanwhile, adjusting the susceptor rotation speed from 300 to 170 RPM plays a crucial role in optimizing crystalline quality, effectively reducing surface roughness by approximately 15 times. This study offers a foundational guide for optimizing MOCVD growth conditions of r-GeO2 films, emphasizing the crucial need for precise control over deposition temperature and rotation speed to enhance adatom mobility and effectively minimize the boundary layer thickness.</description><subject>Boundary layer thickness</subject><subject>Crystal growth</subject><subject>Electron mobility</subject><subject>Epitaxial growth</subject><subject>Figure of merit</subject><subject>Gallium oxides</subject><subject>Germanium</subject><subject>Germanium oxides</subject><subject>Metalorganic chemical vapor deposition</subject><subject>Organic chemicals</subject><subject>Organic chemistry</subject><subject>Rotation</subject><subject>Rutile</subject><subject>Substrates</subject><subject>Surface roughness</subject><subject>Thermal conductivity</subject><subject>Titanium dioxide</subject><subject>Wide bandgap semiconductors</subject><issn>0003-6951</issn><issn>1077-3118</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp90MFKw0AQBuBFFIzVg28Q8FQhdWa3O5scpdYqVHJRr8tms9GU2MTd1OrbG0nPnoaBjxn-n7FLhBkCiRs5A86JCI9YhKBUIhDTYxYBgEgok3jKzkLYDKvkQkRsuuzq3nzXponffLvv3-O2iv2urxsXr1zO46_axE_54vXunJ1Upgnu4jAn7OV--bx4SNb56nFxu04sR9UnErkUaZVWVJKQBac5WiolqnnBrc0UCCu5ExYVOEJeSGWoyoRRwCWZUokJuxrvdr793LnQ602789vhpRYIQ0YEToOajsr6NgTvKt35-sP4H42g_5rQUh-aGOz1aIMdsvZ1u_0H_wI-ilkc</recordid><startdate>20240902</startdate><enddate>20240902</enddate><creator>Rahaman, Imteaz</creator><creator>Duersch, Bobby G.</creator><creator>Ellis, Hunter D.</creator><creator>Scarpulla, Michael A.</creator><creator>Fu, Kai</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-8127-3291</orcidid><orcidid>https://orcid.org/0000-0002-9405-7512</orcidid><orcidid>https://orcid.org/0000-0003-0226-5240</orcidid><orcidid>https://orcid.org/0000-0002-6084-6839</orcidid><orcidid>https://orcid.org/0000-0002-2567-0559</orcidid></search><sort><creationdate>20240902</creationdate><title>Epitaxial growth of rutile GeO2 via MOCVD</title><author>Rahaman, Imteaz ; Duersch, Bobby G. ; Ellis, Hunter D. ; Scarpulla, Michael A. ; Fu, Kai</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c217t-512538f8f6d635b2641c6d5174b2cc9703c52e3c170e612b57a6f93a70256ad73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Boundary layer thickness</topic><topic>Crystal growth</topic><topic>Electron mobility</topic><topic>Epitaxial growth</topic><topic>Figure of merit</topic><topic>Gallium oxides</topic><topic>Germanium</topic><topic>Germanium oxides</topic><topic>Metalorganic chemical vapor deposition</topic><topic>Organic chemicals</topic><topic>Organic chemistry</topic><topic>Rotation</topic><topic>Rutile</topic><topic>Substrates</topic><topic>Surface roughness</topic><topic>Thermal conductivity</topic><topic>Titanium dioxide</topic><topic>Wide bandgap semiconductors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rahaman, Imteaz</creatorcontrib><creatorcontrib>Duersch, Bobby G.</creatorcontrib><creatorcontrib>Ellis, Hunter D.</creatorcontrib><creatorcontrib>Scarpulla, Michael A.</creatorcontrib><creatorcontrib>Fu, Kai</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Applied physics letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rahaman, Imteaz</au><au>Duersch, Bobby G.</au><au>Ellis, Hunter D.</au><au>Scarpulla, Michael A.</au><au>Fu, Kai</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Epitaxial growth of rutile GeO2 via MOCVD</atitle><jtitle>Applied physics letters</jtitle><date>2024-09-02</date><risdate>2024</risdate><volume>125</volume><issue>10</issue><issn>0003-6951</issn><eissn>1077-3118</eissn><coden>APPLAB</coden><abstract>Rutile germanium dioxide (r-GeO2) has been identified as an ultrawide bandgap semiconductor recently, featuring a bandgap of 4.68 eV—comparable to Ga2O3—but offering bipolar dopability, higher electron mobility, higher thermal conductivity, and higher Baliga figure of merit (BFOM). These superior properties position GeO2 as a promising material for various semiconductor applications. However, the epitaxial growth of r-GeO2, particularly in its most advantageous rutile polymorph, is still at an early stage. This work explores the growth of r-GeO2 using metal-organic chemical vapor deposition (MOCVD) on an r-TiO2 (001) substrate, utilizing tetraethyl germane as the precursor. Our investigations reveal that higher growth temperatures significantly enhance crystalline quality, achieving a full width at half maximum of 0.181° at 925 °C, compared to 0.54° at 840 °C and amorphous structures at 725 °C. Additionally, we found that longer growth durations increase surface roughness due to the formation of faceted crystals. Meanwhile, adjusting the susceptor rotation speed from 300 to 170 RPM plays a crucial role in optimizing crystalline quality, effectively reducing surface roughness by approximately 15 times. This study offers a foundational guide for optimizing MOCVD growth conditions of r-GeO2 films, emphasizing the crucial need for precise control over deposition temperature and rotation speed to enhance adatom mobility and effectively minimize the boundary layer thickness.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0226661</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-8127-3291</orcidid><orcidid>https://orcid.org/0000-0002-9405-7512</orcidid><orcidid>https://orcid.org/0000-0003-0226-5240</orcidid><orcidid>https://orcid.org/0000-0002-6084-6839</orcidid><orcidid>https://orcid.org/0000-0002-2567-0559</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0003-6951
ispartof Applied physics letters, 2024-09, Vol.125 (10)
issn 0003-6951
1077-3118
language eng
recordid cdi_proquest_journals_3100631026
source AIP Journals Complete
subjects Boundary layer thickness
Crystal growth
Electron mobility
Epitaxial growth
Figure of merit
Gallium oxides
Germanium
Germanium oxides
Metalorganic chemical vapor deposition
Organic chemicals
Organic chemistry
Rotation
Rutile
Substrates
Surface roughness
Thermal conductivity
Titanium dioxide
Wide bandgap semiconductors
title Epitaxial growth of rutile GeO2 via MOCVD
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T03%3A42%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Epitaxial%20growth%20of%20rutile%20GeO2%20via%20MOCVD&rft.jtitle=Applied%20physics%20letters&rft.au=Rahaman,%20Imteaz&rft.date=2024-09-02&rft.volume=125&rft.issue=10&rft.issn=0003-6951&rft.eissn=1077-3118&rft.coden=APPLAB&rft_id=info:doi/10.1063/5.0226661&rft_dat=%3Cproquest_scita%3E3100631026%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3100631026&rft_id=info:pmid/&rfr_iscdi=true