Improved Interpretable-based Physically Guided Spatial Attention for Cross-process Parameters End Milling Cutter Wear Identification

The insufficient interpretability of deep learning has become a critical issue restraining its industrial applications. Intelligent assessment methods for tool wear state exhibit high levels of speed, automation, and intelligence; however, the end-to-end patterns and extracted features are challengi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Ji xie gong cheng xue bao 2024-01, Vol.60 (12), p.147
Hauptverfasser: Lai, Xuwei, Ding, Kun, Zhang, Kai, Huang, Fengfei, Zheng, Qing, Li, Zhixuan, Ding, Guofu
Format: Artikel
Sprache:chi
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 12
container_start_page 147
container_title Ji xie gong cheng xue bao
container_volume 60
creator Lai, Xuwei
Ding, Kun
Zhang, Kai
Huang, Fengfei
Zheng, Qing
Li, Zhixuan
Ding, Guofu
description The insufficient interpretability of deep learning has become a critical issue restraining its industrial applications. Intelligent assessment methods for tool wear state exhibit high levels of speed, automation, and intelligence; however, the end-to-end patterns and extracted features are challenging to be understood. Especially when dealing with cross-process parameters, their interpretability is poor, and their reliability is insufficient. Cross-process parameters end milling cutter wear state identification model is proposed to address this based on an improved interpretable-based physically guided spatial attention mechanism. Firstly, a physically guided spatial attention module is constructed based on the periodic discontinuity characteristics of the signals, enabling the adaptive capture of key signal fragments under cross-process parameters such as feed rate and cutting depth. Secondly, constraints are applied to the features using maximum mean discrepancy and variance, reducing the distribution discr
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_3100591998</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3100591998</sourcerecordid><originalsourceid>FETCH-proquest_journals_31005919983</originalsourceid><addsrcrecordid>eNqNzMFqwkAQBuA9WKhY32HAcyAxTWKOErTmUBAUPMrETNqVdTfObAre--DdQB_A08A___9N1DTOiiLK81X-quYiuomTdFkss-x9qn7rW8_uh1qorSfumTw2hqIGJWT774foCxrzgI9BtyE59Og1Glh7T9ZrZ6FzDBU7kShAFxKBPTLeKGgCG9vCpzZG2y-ohrBhOBEy1O247oI9Gm_qpUMjNP-_M7XYbo7VbhTvA4k_X93ANrzOaRLHWZmU5Sp9rvUHONpTKA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3100591998</pqid></control><display><type>article</type><title>Improved Interpretable-based Physically Guided Spatial Attention for Cross-process Parameters End Milling Cutter Wear Identification</title><source>Alma/SFX Local Collection</source><creator>Lai, Xuwei ; Ding, Kun ; Zhang, Kai ; Huang, Fengfei ; Zheng, Qing ; Li, Zhixuan ; Ding, Guofu</creator><creatorcontrib>Lai, Xuwei ; Ding, Kun ; Zhang, Kai ; Huang, Fengfei ; Zheng, Qing ; Li, Zhixuan ; Ding, Guofu</creatorcontrib><description>The insufficient interpretability of deep learning has become a critical issue restraining its industrial applications. Intelligent assessment methods for tool wear state exhibit high levels of speed, automation, and intelligence; however, the end-to-end patterns and extracted features are challenging to be understood. Especially when dealing with cross-process parameters, their interpretability is poor, and their reliability is insufficient. Cross-process parameters end milling cutter wear state identification model is proposed to address this based on an improved interpretable-based physically guided spatial attention mechanism. Firstly, a physically guided spatial attention module is constructed based on the periodic discontinuity characteristics of the signals, enabling the adaptive capture of key signal fragments under cross-process parameters such as feed rate and cutting depth. Secondly, constraints are applied to the features using maximum mean discrepancy and variance, reducing the distribution discr</description><identifier>ISSN: 0577-6686</identifier><language>chi</language><publisher>Beijing: Chinese Mechanical Engineering Society (CMES)</publisher><subject>Cutting parameters ; Cutting wear ; Deep learning ; End milling cutters ; Feature extraction ; Feed rate ; Industrial applications ; Parameter identification ; Process parameters ; Tool wear ; Wear mechanisms ; Wear rate</subject><ispartof>Ji xie gong cheng xue bao, 2024-01, Vol.60 (12), p.147</ispartof><rights>Copyright Chinese Mechanical Engineering Society (CMES) 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780</link.rule.ids></links><search><creatorcontrib>Lai, Xuwei</creatorcontrib><creatorcontrib>Ding, Kun</creatorcontrib><creatorcontrib>Zhang, Kai</creatorcontrib><creatorcontrib>Huang, Fengfei</creatorcontrib><creatorcontrib>Zheng, Qing</creatorcontrib><creatorcontrib>Li, Zhixuan</creatorcontrib><creatorcontrib>Ding, Guofu</creatorcontrib><title>Improved Interpretable-based Physically Guided Spatial Attention for Cross-process Parameters End Milling Cutter Wear Identification</title><title>Ji xie gong cheng xue bao</title><description>The insufficient interpretability of deep learning has become a critical issue restraining its industrial applications. Intelligent assessment methods for tool wear state exhibit high levels of speed, automation, and intelligence; however, the end-to-end patterns and extracted features are challenging to be understood. Especially when dealing with cross-process parameters, their interpretability is poor, and their reliability is insufficient. Cross-process parameters end milling cutter wear state identification model is proposed to address this based on an improved interpretable-based physically guided spatial attention mechanism. Firstly, a physically guided spatial attention module is constructed based on the periodic discontinuity characteristics of the signals, enabling the adaptive capture of key signal fragments under cross-process parameters such as feed rate and cutting depth. Secondly, constraints are applied to the features using maximum mean discrepancy and variance, reducing the distribution discr</description><subject>Cutting parameters</subject><subject>Cutting wear</subject><subject>Deep learning</subject><subject>End milling cutters</subject><subject>Feature extraction</subject><subject>Feed rate</subject><subject>Industrial applications</subject><subject>Parameter identification</subject><subject>Process parameters</subject><subject>Tool wear</subject><subject>Wear mechanisms</subject><subject>Wear rate</subject><issn>0577-6686</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNqNzMFqwkAQBuA9WKhY32HAcyAxTWKOErTmUBAUPMrETNqVdTfObAre--DdQB_A08A___9N1DTOiiLK81X-quYiuomTdFkss-x9qn7rW8_uh1qorSfumTw2hqIGJWT774foCxrzgI9BtyE59Og1Glh7T9ZrZ6FzDBU7kShAFxKBPTLeKGgCG9vCpzZG2y-ohrBhOBEy1O247oI9Gm_qpUMjNP-_M7XYbo7VbhTvA4k_X93ANrzOaRLHWZmU5Sp9rvUHONpTKA</recordid><startdate>20240101</startdate><enddate>20240101</enddate><creator>Lai, Xuwei</creator><creator>Ding, Kun</creator><creator>Zhang, Kai</creator><creator>Huang, Fengfei</creator><creator>Zheng, Qing</creator><creator>Li, Zhixuan</creator><creator>Ding, Guofu</creator><general>Chinese Mechanical Engineering Society (CMES)</general><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20240101</creationdate><title>Improved Interpretable-based Physically Guided Spatial Attention for Cross-process Parameters End Milling Cutter Wear Identification</title><author>Lai, Xuwei ; Ding, Kun ; Zhang, Kai ; Huang, Fengfei ; Zheng, Qing ; Li, Zhixuan ; Ding, Guofu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_31005919983</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>chi</language><creationdate>2024</creationdate><topic>Cutting parameters</topic><topic>Cutting wear</topic><topic>Deep learning</topic><topic>End milling cutters</topic><topic>Feature extraction</topic><topic>Feed rate</topic><topic>Industrial applications</topic><topic>Parameter identification</topic><topic>Process parameters</topic><topic>Tool wear</topic><topic>Wear mechanisms</topic><topic>Wear rate</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lai, Xuwei</creatorcontrib><creatorcontrib>Ding, Kun</creatorcontrib><creatorcontrib>Zhang, Kai</creatorcontrib><creatorcontrib>Huang, Fengfei</creatorcontrib><creatorcontrib>Zheng, Qing</creatorcontrib><creatorcontrib>Li, Zhixuan</creatorcontrib><creatorcontrib>Ding, Guofu</creatorcontrib><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Ji xie gong cheng xue bao</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lai, Xuwei</au><au>Ding, Kun</au><au>Zhang, Kai</au><au>Huang, Fengfei</au><au>Zheng, Qing</au><au>Li, Zhixuan</au><au>Ding, Guofu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Improved Interpretable-based Physically Guided Spatial Attention for Cross-process Parameters End Milling Cutter Wear Identification</atitle><jtitle>Ji xie gong cheng xue bao</jtitle><date>2024-01-01</date><risdate>2024</risdate><volume>60</volume><issue>12</issue><spage>147</spage><pages>147-</pages><issn>0577-6686</issn><abstract>The insufficient interpretability of deep learning has become a critical issue restraining its industrial applications. Intelligent assessment methods for tool wear state exhibit high levels of speed, automation, and intelligence; however, the end-to-end patterns and extracted features are challenging to be understood. Especially when dealing with cross-process parameters, their interpretability is poor, and their reliability is insufficient. Cross-process parameters end milling cutter wear state identification model is proposed to address this based on an improved interpretable-based physically guided spatial attention mechanism. Firstly, a physically guided spatial attention module is constructed based on the periodic discontinuity characteristics of the signals, enabling the adaptive capture of key signal fragments under cross-process parameters such as feed rate and cutting depth. Secondly, constraints are applied to the features using maximum mean discrepancy and variance, reducing the distribution discr</abstract><cop>Beijing</cop><pub>Chinese Mechanical Engineering Society (CMES)</pub></addata></record>
fulltext fulltext
identifier ISSN: 0577-6686
ispartof Ji xie gong cheng xue bao, 2024-01, Vol.60 (12), p.147
issn 0577-6686
language chi
recordid cdi_proquest_journals_3100591998
source Alma/SFX Local Collection
subjects Cutting parameters
Cutting wear
Deep learning
End milling cutters
Feature extraction
Feed rate
Industrial applications
Parameter identification
Process parameters
Tool wear
Wear mechanisms
Wear rate
title Improved Interpretable-based Physically Guided Spatial Attention for Cross-process Parameters End Milling Cutter Wear Identification
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T03%3A29%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Improved%20Interpretable-based%20Physically%20Guided%20Spatial%20Attention%20for%20Cross-process%20Parameters%20End%20Milling%20Cutter%20Wear%20Identification&rft.jtitle=Ji%20xie%20gong%20cheng%20xue%20bao&rft.au=Lai,%20Xuwei&rft.date=2024-01-01&rft.volume=60&rft.issue=12&rft.spage=147&rft.pages=147-&rft.issn=0577-6686&rft_id=info:doi/&rft_dat=%3Cproquest%3E3100591998%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3100591998&rft_id=info:pmid/&rfr_iscdi=true