Low-delay low-voltage load aggregator demand response communication transmission architecture based on 5g edge computing
Participation of low-voltage users in demand response is one of the most important ways to mitigate the mismatch between power supply and demand. However, existing smart metering devices cannot support the low-delay and high-reliability transmission of massive power data. 5G communication technology...
Gespeichert in:
Veröffentlicht in: | Journal of physics. Conference series 2024-08, Vol.2831 (1), p.12009 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 1 |
container_start_page | 12009 |
container_title | Journal of physics. Conference series |
container_volume | 2831 |
creator | Qin, Yupeng Lin, Xiuqing Huang, Junli |
description | Participation of low-voltage users in demand response is one of the most important ways to mitigate the mismatch between power supply and demand. However, existing smart metering devices cannot support the low-delay and high-reliability transmission of massive power data. 5G communication technology provides a new communication transmission structure for load aggregators to communicate with low-voltage users and power grid companies. This paper combines 5G communication slicing technology and edge computing technology to rationally allocate computing and communication resources through deep Q-learning algorithms. The scheme proposed in this paper has a lower delay than the equal resource allocation scheme and is suitable for high-speed transmission of massive interactive response data from low-voltage users. |
doi_str_mv | 10.1088/1742-6596/2831/1/012009 |
format | Article |
fullrecord | <record><control><sourceid>proquest_iop_j</sourceid><recordid>TN_cdi_proquest_journals_3100549036</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3100549036</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1699-a5f345ae3499f3737c230b5d2d1e2d86b99d9c9c26a38344d1d7848c2e8f347a3</originalsourceid><addsrcrecordid>eNqFkMtOxCAUhonRxHH0GSRxXculF1iaibdkEje6Jgyc1k7aUqFV5-2l1uhSNufncL5D8iF0Sck1JUKktMxYUuSySJngNKUpoYwQeYRWvy_Hv1mIU3QWwp4QHk-5Qp9b95FYaPUBtzG9u3bUNcSsLdZ17aHWo_PYQqd7iz2EwfUBsHFdN_WN0WPjejx63YeuCWG-aG9emxHMOHnAOx3A4tjNawy2_gaHaWz6-hydVLoNcPFT1-jl7vZ585Bsn-4fNzfbxNBCykTnFc9yDTyTsuIlLw3jZJdbZikwK4qdlFYaaVihueBZZqktRSYMAxHBUvM1ulr2Dt69TRBGtXeT7-OXilNC8kwSXsSpcpky3oXgoVKDbzrtD4oSNWtWs0A1y1SzZkXVojmSfCEbN_yt_o_6Aum8gOw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3100549036</pqid></control><display><type>article</type><title>Low-delay low-voltage load aggregator demand response communication transmission architecture based on 5g edge computing</title><source>Institute of Physics Open Access Journal Titles</source><source>Institute of Physics IOPscience extra</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Qin, Yupeng ; Lin, Xiuqing ; Huang, Junli</creator><creatorcontrib>Qin, Yupeng ; Lin, Xiuqing ; Huang, Junli</creatorcontrib><description>Participation of low-voltage users in demand response is one of the most important ways to mitigate the mismatch between power supply and demand. However, existing smart metering devices cannot support the low-delay and high-reliability transmission of massive power data. 5G communication technology provides a new communication transmission structure for load aggregators to communicate with low-voltage users and power grid companies. This paper combines 5G communication slicing technology and edge computing technology to rationally allocate computing and communication resources through deep Q-learning algorithms. The scheme proposed in this paper has a lower delay than the equal resource allocation scheme and is suitable for high-speed transmission of massive interactive response data from low-voltage users.</description><identifier>ISSN: 1742-6588</identifier><identifier>EISSN: 1742-6596</identifier><identifier>DOI: 10.1088/1742-6596/2831/1/012009</identifier><language>eng</language><publisher>Bristol: IOP Publishing</publisher><subject>Algorithms ; Delay ; Edge computing ; Electric potential ; Electric power demand ; Machine learning ; Resource allocation ; Structural reliability ; Voltage</subject><ispartof>Journal of physics. Conference series, 2024-08, Vol.2831 (1), p.12009</ispartof><rights>Published under licence by IOP Publishing Ltd</rights><rights>Published under licence by IOP Publishing Ltd. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/1742-6596/2831/1/012009/pdf$$EPDF$$P50$$Giop$$Hfree_for_read</linktopdf><link.rule.ids>314,780,784,27924,27925,38868,38890,53840,53867</link.rule.ids></links><search><creatorcontrib>Qin, Yupeng</creatorcontrib><creatorcontrib>Lin, Xiuqing</creatorcontrib><creatorcontrib>Huang, Junli</creatorcontrib><title>Low-delay low-voltage load aggregator demand response communication transmission architecture based on 5g edge computing</title><title>Journal of physics. Conference series</title><addtitle>J. Phys.: Conf. Ser</addtitle><description>Participation of low-voltage users in demand response is one of the most important ways to mitigate the mismatch between power supply and demand. However, existing smart metering devices cannot support the low-delay and high-reliability transmission of massive power data. 5G communication technology provides a new communication transmission structure for load aggregators to communicate with low-voltage users and power grid companies. This paper combines 5G communication slicing technology and edge computing technology to rationally allocate computing and communication resources through deep Q-learning algorithms. The scheme proposed in this paper has a lower delay than the equal resource allocation scheme and is suitable for high-speed transmission of massive interactive response data from low-voltage users.</description><subject>Algorithms</subject><subject>Delay</subject><subject>Edge computing</subject><subject>Electric potential</subject><subject>Electric power demand</subject><subject>Machine learning</subject><subject>Resource allocation</subject><subject>Structural reliability</subject><subject>Voltage</subject><issn>1742-6588</issn><issn>1742-6596</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>O3W</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqFkMtOxCAUhonRxHH0GSRxXculF1iaibdkEje6Jgyc1k7aUqFV5-2l1uhSNufncL5D8iF0Sck1JUKktMxYUuSySJngNKUpoYwQeYRWvy_Hv1mIU3QWwp4QHk-5Qp9b95FYaPUBtzG9u3bUNcSsLdZ17aHWo_PYQqd7iz2EwfUBsHFdN_WN0WPjejx63YeuCWG-aG9emxHMOHnAOx3A4tjNawy2_gaHaWz6-hydVLoNcPFT1-jl7vZ585Bsn-4fNzfbxNBCykTnFc9yDTyTsuIlLw3jZJdbZikwK4qdlFYaaVihueBZZqktRSYMAxHBUvM1ulr2Dt69TRBGtXeT7-OXilNC8kwSXsSpcpky3oXgoVKDbzrtD4oSNWtWs0A1y1SzZkXVojmSfCEbN_yt_o_6Aum8gOw</recordid><startdate>20240801</startdate><enddate>20240801</enddate><creator>Qin, Yupeng</creator><creator>Lin, Xiuqing</creator><creator>Huang, Junli</creator><general>IOP Publishing</general><scope>O3W</scope><scope>TSCCA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>L7M</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope></search><sort><creationdate>20240801</creationdate><title>Low-delay low-voltage load aggregator demand response communication transmission architecture based on 5g edge computing</title><author>Qin, Yupeng ; Lin, Xiuqing ; Huang, Junli</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1699-a5f345ae3499f3737c230b5d2d1e2d86b99d9c9c26a38344d1d7848c2e8f347a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algorithms</topic><topic>Delay</topic><topic>Edge computing</topic><topic>Electric potential</topic><topic>Electric power demand</topic><topic>Machine learning</topic><topic>Resource allocation</topic><topic>Structural reliability</topic><topic>Voltage</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Qin, Yupeng</creatorcontrib><creatorcontrib>Lin, Xiuqing</creatorcontrib><creatorcontrib>Huang, Junli</creatorcontrib><collection>Institute of Physics Open Access Journal Titles</collection><collection>IOPscience (Open Access)</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Journal of physics. Conference series</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Qin, Yupeng</au><au>Lin, Xiuqing</au><au>Huang, Junli</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Low-delay low-voltage load aggregator demand response communication transmission architecture based on 5g edge computing</atitle><jtitle>Journal of physics. Conference series</jtitle><addtitle>J. Phys.: Conf. Ser</addtitle><date>2024-08-01</date><risdate>2024</risdate><volume>2831</volume><issue>1</issue><spage>12009</spage><pages>12009-</pages><issn>1742-6588</issn><eissn>1742-6596</eissn><abstract>Participation of low-voltage users in demand response is one of the most important ways to mitigate the mismatch between power supply and demand. However, existing smart metering devices cannot support the low-delay and high-reliability transmission of massive power data. 5G communication technology provides a new communication transmission structure for load aggregators to communicate with low-voltage users and power grid companies. This paper combines 5G communication slicing technology and edge computing technology to rationally allocate computing and communication resources through deep Q-learning algorithms. The scheme proposed in this paper has a lower delay than the equal resource allocation scheme and is suitable for high-speed transmission of massive interactive response data from low-voltage users.</abstract><cop>Bristol</cop><pub>IOP Publishing</pub><doi>10.1088/1742-6596/2831/1/012009</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1742-6588 |
ispartof | Journal of physics. Conference series, 2024-08, Vol.2831 (1), p.12009 |
issn | 1742-6588 1742-6596 |
language | eng |
recordid | cdi_proquest_journals_3100549036 |
source | Institute of Physics Open Access Journal Titles; Institute of Physics IOPscience extra; EZB-FREE-00999 freely available EZB journals; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry |
subjects | Algorithms Delay Edge computing Electric potential Electric power demand Machine learning Resource allocation Structural reliability Voltage |
title | Low-delay low-voltage load aggregator demand response communication transmission architecture based on 5g edge computing |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T13%3A42%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_iop_j&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Low-delay%20low-voltage%20load%20aggregator%20demand%20response%20communication%20transmission%20architecture%20based%20on%205g%20edge%20computing&rft.jtitle=Journal%20of%20physics.%20Conference%20series&rft.au=Qin,%20Yupeng&rft.date=2024-08-01&rft.volume=2831&rft.issue=1&rft.spage=12009&rft.pages=12009-&rft.issn=1742-6588&rft.eissn=1742-6596&rft_id=info:doi/10.1088/1742-6596/2831/1/012009&rft_dat=%3Cproquest_iop_j%3E3100549036%3C/proquest_iop_j%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3100549036&rft_id=info:pmid/&rfr_iscdi=true |