Design of computer vision assisted machine learning based controller for the Stewart platform to track spatial objects

The present work aims to develop an object tracking controller for the Stewart platform using a computer vision-assisted machine learning-based approach. This research is divided into two modules. The first module focuses on the design of a motion controller for the Physik Instrumente (PI)-based Ste...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Frontiers of Structural and Civil Engineering 2024-08, Vol.18 (8), p.1195-1208
Hauptverfasser: Chauhan, Dev Kunwar Singh, Vundavilli, Pandu R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1208
container_issue 8
container_start_page 1195
container_title Frontiers of Structural and Civil Engineering
container_volume 18
creator Chauhan, Dev Kunwar Singh
Vundavilli, Pandu R.
description The present work aims to develop an object tracking controller for the Stewart platform using a computer vision-assisted machine learning-based approach. This research is divided into two modules. The first module focuses on the design of a motion controller for the Physik Instrumente (PI)-based Stewart platform. In contrast, the second module deals with the development of a machine-learning-based spatial object tracking algorithm by collecting information from the Zed 2 stereo vision system. Presently, simple feed-forward neural networks (NN) are used to predict the orientation of the top table of the platform. While training, the x , y , and z coordinates of the three-dimensional (3D) object, extracted from images, are used as the input to the NN. In contrast, the orientation information of the platform (that is, rotation about the x , y , and z -axes) is considered as the output from the network. The orientation information obtained from the network is fed to the inverse kinematics-based motion controller (module 1) to move the platform while tracking the object. After training, the optimised NN is used to track the continuously moving 3D object. The experimental results show that the developed NN-based controller has successfully tracked the moving spatial object with reasonably good accuracy.
doi_str_mv 10.1007/s11709-024-1086-y
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3100538510</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3100538510</sourcerecordid><originalsourceid>FETCH-LOGICAL-c198t-db733aa226176228b618c778889ffab7d5b0032b503d0a63c25c8ca9ef4833fe3</originalsourceid><addsrcrecordid>eNp1kE1LxDAQhoMouKz7A7wFPFcnSdukR1k_YcGDeg5pmux2bZuaZFf235uloidPMwzv8w48CF0SuCYA_CYQwqHKgOYZAVFmhxM0o1AVGc3z6vR3Z3COFiFsAYAAZyDYDO3vTGjXA3YWa9ePu2g83rehdQNWIbQhmgb3Sm_aweDOKD-0wxrXKqSzdkP0rusSYZ3HcWPwazRfykc8diqmW4-jw9Er_YHDqGKrOuzqrdExXKAzq7pgFj9zjt4f7t-WT9nq5fF5ebvKNKlEzJqaM6YUpSXhJaWiLonQnAshKmtVzZuiBmC0LoA1oEqmaaGFVpWxuWDMGjZHV1Pv6N3nzoQot27nh_RSsqSuYKIgkFJkSmnvQvDGytG3vfIHSUAeDcvJsEyG5dGwPCSGTkxI2WFt_F_z_9A36ZyARw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3100538510</pqid></control><display><type>article</type><title>Design of computer vision assisted machine learning based controller for the Stewart platform to track spatial objects</title><source>Springer Nature - Complete Springer Journals</source><creator>Chauhan, Dev Kunwar Singh ; Vundavilli, Pandu R.</creator><creatorcontrib>Chauhan, Dev Kunwar Singh ; Vundavilli, Pandu R.</creatorcontrib><description>The present work aims to develop an object tracking controller for the Stewart platform using a computer vision-assisted machine learning-based approach. This research is divided into two modules. The first module focuses on the design of a motion controller for the Physik Instrumente (PI)-based Stewart platform. In contrast, the second module deals with the development of a machine-learning-based spatial object tracking algorithm by collecting information from the Zed 2 stereo vision system. Presently, simple feed-forward neural networks (NN) are used to predict the orientation of the top table of the platform. While training, the x , y , and z coordinates of the three-dimensional (3D) object, extracted from images, are used as the input to the NN. In contrast, the orientation information of the platform (that is, rotation about the x , y , and z -axes) is considered as the output from the network. The orientation information obtained from the network is fed to the inverse kinematics-based motion controller (module 1) to move the platform while tracking the object. After training, the optimised NN is used to track the continuously moving 3D object. The experimental results show that the developed NN-based controller has successfully tracked the moving spatial object with reasonably good accuracy.</description><identifier>ISSN: 2095-2430</identifier><identifier>EISSN: 2095-2449</identifier><identifier>DOI: 10.1007/s11709-024-1086-y</identifier><language>eng</language><publisher>Beijing: Higher Education Press</publisher><subject>Algorithms ; Cities ; Civil Engineering ; Computer vision ; Control systems design ; Controllers ; Countries ; Engineering ; Image contrast ; Inverse kinematics ; Kinematics ; Learning algorithms ; Machine learning ; Modules ; Neural networks ; Orientation ; Regions ; Research Article ; Tracking ; Vision systems</subject><ispartof>Frontiers of Structural and Civil Engineering, 2024-08, Vol.18 (8), p.1195-1208</ispartof><rights>Higher Education Press 2024</rights><rights>Higher Education Press 2024.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c198t-db733aa226176228b618c778889ffab7d5b0032b503d0a63c25c8ca9ef4833fe3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11709-024-1086-y$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11709-024-1086-y$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51298</link.rule.ids></links><search><creatorcontrib>Chauhan, Dev Kunwar Singh</creatorcontrib><creatorcontrib>Vundavilli, Pandu R.</creatorcontrib><title>Design of computer vision assisted machine learning based controller for the Stewart platform to track spatial objects</title><title>Frontiers of Structural and Civil Engineering</title><addtitle>Front. Struct. Civ. Eng</addtitle><description>The present work aims to develop an object tracking controller for the Stewart platform using a computer vision-assisted machine learning-based approach. This research is divided into two modules. The first module focuses on the design of a motion controller for the Physik Instrumente (PI)-based Stewart platform. In contrast, the second module deals with the development of a machine-learning-based spatial object tracking algorithm by collecting information from the Zed 2 stereo vision system. Presently, simple feed-forward neural networks (NN) are used to predict the orientation of the top table of the platform. While training, the x , y , and z coordinates of the three-dimensional (3D) object, extracted from images, are used as the input to the NN. In contrast, the orientation information of the platform (that is, rotation about the x , y , and z -axes) is considered as the output from the network. The orientation information obtained from the network is fed to the inverse kinematics-based motion controller (module 1) to move the platform while tracking the object. After training, the optimised NN is used to track the continuously moving 3D object. The experimental results show that the developed NN-based controller has successfully tracked the moving spatial object with reasonably good accuracy.</description><subject>Algorithms</subject><subject>Cities</subject><subject>Civil Engineering</subject><subject>Computer vision</subject><subject>Control systems design</subject><subject>Controllers</subject><subject>Countries</subject><subject>Engineering</subject><subject>Image contrast</subject><subject>Inverse kinematics</subject><subject>Kinematics</subject><subject>Learning algorithms</subject><subject>Machine learning</subject><subject>Modules</subject><subject>Neural networks</subject><subject>Orientation</subject><subject>Regions</subject><subject>Research Article</subject><subject>Tracking</subject><subject>Vision systems</subject><issn>2095-2430</issn><issn>2095-2449</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp1kE1LxDAQhoMouKz7A7wFPFcnSdukR1k_YcGDeg5pmux2bZuaZFf235uloidPMwzv8w48CF0SuCYA_CYQwqHKgOYZAVFmhxM0o1AVGc3z6vR3Z3COFiFsAYAAZyDYDO3vTGjXA3YWa9ePu2g83rehdQNWIbQhmgb3Sm_aweDOKD-0wxrXKqSzdkP0rusSYZ3HcWPwazRfykc8diqmW4-jw9Er_YHDqGKrOuzqrdExXKAzq7pgFj9zjt4f7t-WT9nq5fF5ebvKNKlEzJqaM6YUpSXhJaWiLonQnAshKmtVzZuiBmC0LoA1oEqmaaGFVpWxuWDMGjZHV1Pv6N3nzoQot27nh_RSsqSuYKIgkFJkSmnvQvDGytG3vfIHSUAeDcvJsEyG5dGwPCSGTkxI2WFt_F_z_9A36ZyARw</recordid><startdate>20240801</startdate><enddate>20240801</enddate><creator>Chauhan, Dev Kunwar Singh</creator><creator>Vundavilli, Pandu R.</creator><general>Higher Education Press</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20240801</creationdate><title>Design of computer vision assisted machine learning based controller for the Stewart platform to track spatial objects</title><author>Chauhan, Dev Kunwar Singh ; Vundavilli, Pandu R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c198t-db733aa226176228b618c778889ffab7d5b0032b503d0a63c25c8ca9ef4833fe3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algorithms</topic><topic>Cities</topic><topic>Civil Engineering</topic><topic>Computer vision</topic><topic>Control systems design</topic><topic>Controllers</topic><topic>Countries</topic><topic>Engineering</topic><topic>Image contrast</topic><topic>Inverse kinematics</topic><topic>Kinematics</topic><topic>Learning algorithms</topic><topic>Machine learning</topic><topic>Modules</topic><topic>Neural networks</topic><topic>Orientation</topic><topic>Regions</topic><topic>Research Article</topic><topic>Tracking</topic><topic>Vision systems</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chauhan, Dev Kunwar Singh</creatorcontrib><creatorcontrib>Vundavilli, Pandu R.</creatorcontrib><collection>CrossRef</collection><jtitle>Frontiers of Structural and Civil Engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chauhan, Dev Kunwar Singh</au><au>Vundavilli, Pandu R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Design of computer vision assisted machine learning based controller for the Stewart platform to track spatial objects</atitle><jtitle>Frontiers of Structural and Civil Engineering</jtitle><stitle>Front. Struct. Civ. Eng</stitle><date>2024-08-01</date><risdate>2024</risdate><volume>18</volume><issue>8</issue><spage>1195</spage><epage>1208</epage><pages>1195-1208</pages><issn>2095-2430</issn><eissn>2095-2449</eissn><abstract>The present work aims to develop an object tracking controller for the Stewart platform using a computer vision-assisted machine learning-based approach. This research is divided into two modules. The first module focuses on the design of a motion controller for the Physik Instrumente (PI)-based Stewart platform. In contrast, the second module deals with the development of a machine-learning-based spatial object tracking algorithm by collecting information from the Zed 2 stereo vision system. Presently, simple feed-forward neural networks (NN) are used to predict the orientation of the top table of the platform. While training, the x , y , and z coordinates of the three-dimensional (3D) object, extracted from images, are used as the input to the NN. In contrast, the orientation information of the platform (that is, rotation about the x , y , and z -axes) is considered as the output from the network. The orientation information obtained from the network is fed to the inverse kinematics-based motion controller (module 1) to move the platform while tracking the object. After training, the optimised NN is used to track the continuously moving 3D object. The experimental results show that the developed NN-based controller has successfully tracked the moving spatial object with reasonably good accuracy.</abstract><cop>Beijing</cop><pub>Higher Education Press</pub><doi>10.1007/s11709-024-1086-y</doi><tpages>14</tpages></addata></record>
fulltext fulltext
identifier ISSN: 2095-2430
ispartof Frontiers of Structural and Civil Engineering, 2024-08, Vol.18 (8), p.1195-1208
issn 2095-2430
2095-2449
language eng
recordid cdi_proquest_journals_3100538510
source Springer Nature - Complete Springer Journals
subjects Algorithms
Cities
Civil Engineering
Computer vision
Control systems design
Controllers
Countries
Engineering
Image contrast
Inverse kinematics
Kinematics
Learning algorithms
Machine learning
Modules
Neural networks
Orientation
Regions
Research Article
Tracking
Vision systems
title Design of computer vision assisted machine learning based controller for the Stewart platform to track spatial objects
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T12%3A02%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Design%20of%20computer%20vision%20assisted%20machine%20learning%20based%20controller%20for%20the%20Stewart%20platform%20to%20track%20spatial%20objects&rft.jtitle=Frontiers%20of%20Structural%20and%20Civil%20Engineering&rft.au=Chauhan,%20Dev%20Kunwar%20Singh&rft.date=2024-08-01&rft.volume=18&rft.issue=8&rft.spage=1195&rft.epage=1208&rft.pages=1195-1208&rft.issn=2095-2430&rft.eissn=2095-2449&rft_id=info:doi/10.1007/s11709-024-1086-y&rft_dat=%3Cproquest_cross%3E3100538510%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3100538510&rft_id=info:pmid/&rfr_iscdi=true