Topological Delaunay Graph for Efficient 3D Binary Image Analysis

Topological data analysis (TDA) based on persistent homology (PH) has become increasingly popular in automation technology. Recent advances in imaging and simulation techniques demand TDA for 3D binary images, but it is not a trivial task in practice, especially in terms of the computational speed o...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of automation technology 2024-09, Vol.18 (5), p.632-650
Hauptverfasser: Yoshizawa, Shin, Michikawa, Takashi, Yokota, Hideo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 650
container_issue 5
container_start_page 632
container_title International journal of automation technology
container_volume 18
creator Yoshizawa, Shin
Michikawa, Takashi
Yokota, Hideo
description Topological data analysis (TDA) based on persistent homology (PH) has become increasingly popular in automation technology. Recent advances in imaging and simulation techniques demand TDA for 3D binary images, but it is not a trivial task in practice, especially in terms of the computational speed of PH. This paper proposes a simple and efficient computational framework to extract topological features of 3D binary images by estimating persistence diagrams (PDs) for 3D binary images. The proposed framework is based on representing a 3D binary image by constructing a topological Delaunay graph with distance edge weights as a Rips complex, and it utilizes PD computation libraries for the constructed graph. The vertices, edges, and edge weights of the proposed graph correspond to connected-components (CCs) in the 3D binary image, Delaunay edges of the generalized Voronoi diagram for the CC boundaries, and minimum distances between adjacent CCs, respectively. Thus, the number of elements required to compute PD is significantly reduced for large objects in 3D binary images compared with conventional representations such as cubical complexes, which results in efficient topological feature estimations.
doi_str_mv 10.20965/ijat.2024.p0632
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3100508454</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3100508454</sourcerecordid><originalsourceid>FETCH-LOGICAL-c346t-527a9aebcadd6be501e06c93d42e4a7c0cd42b7e422999ca490197e7d1de6ec73</originalsourceid><addsrcrecordid>eNotkD1vwjAYhK2qlYpa9o6WOoe-_o5HCpQiIXWhs-U4DjUKcWqHgX_fAJ3uGU6n04PQC4EZBS3FWzjYYUTKZz1IRu_QhJQlK0qg9P7KpFCS6kc0zTlUIIjkRDA1QfNd7GMb98HZFi99a0-dPeN1sv0PbmLCq6YJLvhuwGyJ30Nn0xlvjnbv8byz7TmH_IweGttmP_3PJ_T9sdotPovt13qzmG8Lx7gcCkGV1dZXzta1rLwA4kE6zWpOPbfKgRupUp5TqrV2lmsgWnlVk9pL7xR7Qq-33T7F35PPgznEUxpPZMMIgICSCz624NZyKeacfGP6FI7ja0PAXF2ZiytzcWWurtgfsQZczA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3100508454</pqid></control><display><type>article</type><title>Topological Delaunay Graph for Efficient 3D Binary Image Analysis</title><source>J-STAGE Free</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Yoshizawa, Shin ; Michikawa, Takashi ; Yokota, Hideo</creator><creatorcontrib>Yoshizawa, Shin ; Michikawa, Takashi ; Yokota, Hideo</creatorcontrib><description>Topological data analysis (TDA) based on persistent homology (PH) has become increasingly popular in automation technology. Recent advances in imaging and simulation techniques demand TDA for 3D binary images, but it is not a trivial task in practice, especially in terms of the computational speed of PH. This paper proposes a simple and efficient computational framework to extract topological features of 3D binary images by estimating persistence diagrams (PDs) for 3D binary images. The proposed framework is based on representing a 3D binary image by constructing a topological Delaunay graph with distance edge weights as a Rips complex, and it utilizes PD computation libraries for the constructed graph. The vertices, edges, and edge weights of the proposed graph correspond to connected-components (CCs) in the 3D binary image, Delaunay edges of the generalized Voronoi diagram for the CC boundaries, and minimum distances between adjacent CCs, respectively. Thus, the number of elements required to compute PD is significantly reduced for large objects in 3D binary images compared with conventional representations such as cubical complexes, which results in efficient topological feature estimations.</description><identifier>ISSN: 1881-7629</identifier><identifier>EISSN: 1883-8022</identifier><identifier>DOI: 10.20965/ijat.2024.p0632</identifier><language>eng</language><publisher>Tokyo: Fuji Technology Press Co. Ltd</publisher><subject>Apexes ; Automation ; Bar codes ; Data analysis ; Graph theory ; Graphical representations ; Homology ; Image analysis ; Simulation ; Topology ; Voronoi graphs</subject><ispartof>International journal of automation technology, 2024-09, Vol.18 (5), p.632-650</ispartof><rights>Copyright © 2024 Fuji Technology Press Ltd.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c346t-527a9aebcadd6be501e06c93d42e4a7c0cd42b7e422999ca490197e7d1de6ec73</cites><orcidid>0000-0002-0606-668X ; 0000-0001-8748-6012 ; 0000-0003-1395-309X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,860,27901,27902</link.rule.ids></links><search><creatorcontrib>Yoshizawa, Shin</creatorcontrib><creatorcontrib>Michikawa, Takashi</creatorcontrib><creatorcontrib>Yokota, Hideo</creatorcontrib><title>Topological Delaunay Graph for Efficient 3D Binary Image Analysis</title><title>International journal of automation technology</title><description>Topological data analysis (TDA) based on persistent homology (PH) has become increasingly popular in automation technology. Recent advances in imaging and simulation techniques demand TDA for 3D binary images, but it is not a trivial task in practice, especially in terms of the computational speed of PH. This paper proposes a simple and efficient computational framework to extract topological features of 3D binary images by estimating persistence diagrams (PDs) for 3D binary images. The proposed framework is based on representing a 3D binary image by constructing a topological Delaunay graph with distance edge weights as a Rips complex, and it utilizes PD computation libraries for the constructed graph. The vertices, edges, and edge weights of the proposed graph correspond to connected-components (CCs) in the 3D binary image, Delaunay edges of the generalized Voronoi diagram for the CC boundaries, and minimum distances between adjacent CCs, respectively. Thus, the number of elements required to compute PD is significantly reduced for large objects in 3D binary images compared with conventional representations such as cubical complexes, which results in efficient topological feature estimations.</description><subject>Apexes</subject><subject>Automation</subject><subject>Bar codes</subject><subject>Data analysis</subject><subject>Graph theory</subject><subject>Graphical representations</subject><subject>Homology</subject><subject>Image analysis</subject><subject>Simulation</subject><subject>Topology</subject><subject>Voronoi graphs</subject><issn>1881-7629</issn><issn>1883-8022</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNotkD1vwjAYhK2qlYpa9o6WOoe-_o5HCpQiIXWhs-U4DjUKcWqHgX_fAJ3uGU6n04PQC4EZBS3FWzjYYUTKZz1IRu_QhJQlK0qg9P7KpFCS6kc0zTlUIIjkRDA1QfNd7GMb98HZFi99a0-dPeN1sv0PbmLCq6YJLvhuwGyJ30Nn0xlvjnbv8byz7TmH_IweGttmP_3PJ_T9sdotPovt13qzmG8Lx7gcCkGV1dZXzta1rLwA4kE6zWpOPbfKgRupUp5TqrV2lmsgWnlVk9pL7xR7Qq-33T7F35PPgznEUxpPZMMIgICSCz624NZyKeacfGP6FI7ja0PAXF2ZiytzcWWurtgfsQZczA</recordid><startdate>20240905</startdate><enddate>20240905</enddate><creator>Yoshizawa, Shin</creator><creator>Michikawa, Takashi</creator><creator>Yokota, Hideo</creator><general>Fuji Technology Press Co. Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><orcidid>https://orcid.org/0000-0002-0606-668X</orcidid><orcidid>https://orcid.org/0000-0001-8748-6012</orcidid><orcidid>https://orcid.org/0000-0003-1395-309X</orcidid></search><sort><creationdate>20240905</creationdate><title>Topological Delaunay Graph for Efficient 3D Binary Image Analysis</title><author>Yoshizawa, Shin ; Michikawa, Takashi ; Yokota, Hideo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c346t-527a9aebcadd6be501e06c93d42e4a7c0cd42b7e422999ca490197e7d1de6ec73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Apexes</topic><topic>Automation</topic><topic>Bar codes</topic><topic>Data analysis</topic><topic>Graph theory</topic><topic>Graphical representations</topic><topic>Homology</topic><topic>Image analysis</topic><topic>Simulation</topic><topic>Topology</topic><topic>Voronoi graphs</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yoshizawa, Shin</creatorcontrib><creatorcontrib>Michikawa, Takashi</creatorcontrib><creatorcontrib>Yokota, Hideo</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>International journal of automation technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yoshizawa, Shin</au><au>Michikawa, Takashi</au><au>Yokota, Hideo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Topological Delaunay Graph for Efficient 3D Binary Image Analysis</atitle><jtitle>International journal of automation technology</jtitle><date>2024-09-05</date><risdate>2024</risdate><volume>18</volume><issue>5</issue><spage>632</spage><epage>650</epage><pages>632-650</pages><issn>1881-7629</issn><eissn>1883-8022</eissn><abstract>Topological data analysis (TDA) based on persistent homology (PH) has become increasingly popular in automation technology. Recent advances in imaging and simulation techniques demand TDA for 3D binary images, but it is not a trivial task in practice, especially in terms of the computational speed of PH. This paper proposes a simple and efficient computational framework to extract topological features of 3D binary images by estimating persistence diagrams (PDs) for 3D binary images. The proposed framework is based on representing a 3D binary image by constructing a topological Delaunay graph with distance edge weights as a Rips complex, and it utilizes PD computation libraries for the constructed graph. The vertices, edges, and edge weights of the proposed graph correspond to connected-components (CCs) in the 3D binary image, Delaunay edges of the generalized Voronoi diagram for the CC boundaries, and minimum distances between adjacent CCs, respectively. Thus, the number of elements required to compute PD is significantly reduced for large objects in 3D binary images compared with conventional representations such as cubical complexes, which results in efficient topological feature estimations.</abstract><cop>Tokyo</cop><pub>Fuji Technology Press Co. Ltd</pub><doi>10.20965/ijat.2024.p0632</doi><tpages>19</tpages><orcidid>https://orcid.org/0000-0002-0606-668X</orcidid><orcidid>https://orcid.org/0000-0001-8748-6012</orcidid><orcidid>https://orcid.org/0000-0003-1395-309X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1881-7629
ispartof International journal of automation technology, 2024-09, Vol.18 (5), p.632-650
issn 1881-7629
1883-8022
language eng
recordid cdi_proquest_journals_3100508454
source J-STAGE Free; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Apexes
Automation
Bar codes
Data analysis
Graph theory
Graphical representations
Homology
Image analysis
Simulation
Topology
Voronoi graphs
title Topological Delaunay Graph for Efficient 3D Binary Image Analysis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T07%3A43%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Topological%20Delaunay%20Graph%20for%20Efficient%203D%20Binary%20Image%20Analysis&rft.jtitle=International%20journal%20of%20automation%20technology&rft.au=Yoshizawa,%20Shin&rft.date=2024-09-05&rft.volume=18&rft.issue=5&rft.spage=632&rft.epage=650&rft.pages=632-650&rft.issn=1881-7629&rft.eissn=1883-8022&rft_id=info:doi/10.20965/ijat.2024.p0632&rft_dat=%3Cproquest_cross%3E3100508454%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3100508454&rft_id=info:pmid/&rfr_iscdi=true