ESRL: efficient similarity representation learning for deepfake detection
For Deepfake detection, many existing works use the cross-entropy loss to enforce the classifier network to learn the mapping relationship from the RGB domain to the class domain, lacking an explicit constraint to guide the feature extraction network to learn discriminative features from an input im...
Gespeichert in:
Veröffentlicht in: | Multimedia tools and applications 2024-02, Vol.83 (31), p.76991-77007 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 77007 |
---|---|
container_issue | 31 |
container_start_page | 76991 |
container_title | Multimedia tools and applications |
container_volume | 83 |
creator | Wang, Feng Zhang, Dengyong Guo, Zhiqing Wang, Dewang Yang, Gaobo |
description | For Deepfake detection, many existing works use the cross-entropy loss to enforce the classifier network to learn the mapping relationship from the RGB domain to the class domain, lacking an explicit constraint to guide the feature extraction network to learn discriminative features from an input image. This constrains the feature representation capability to expose deepfake. In this work, we analyze the feature extraction network in terms of both difference and similarity capabilities and propose a new constraint called similarity loss (SL) to improve the detection performance of the convolutional neural network (CNN) based detector. Moreover, according to the experimental results of the SL on data augmentation effectiveness, we propose a simple yet efficient framework, which is called as efficient similarity representation learning (ESRL), for deepfake detection. Extensive experiments on three public datasets (namely FF++, DFDC, and Celeb-DF) show that the feature extraction network trained with the help of SL can map forged faces and real faces to different feature embedding and map the same type of forged faces to similar feature embedding. |
doi_str_mv | 10.1007/s11042-024-18447-x |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3100357016</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3100357016</sourcerecordid><originalsourceid>FETCH-LOGICAL-c270t-305717b5f56820b7fcf309762c11baa2f5d766745c817d0f4f5131ba854ddb713</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMoWKt_wNOC59VMPnZWb1KqFgqCH-eQzSYldbu7Jlto_72pK-jJ07zMvO8M8xByCfQaKMWbCEAFyykTOZRCYL47IhOQyHNEBsd_9Ck5i3FNKRSSiQlZzF9flneZdc4bb9shi37jGx38sM-C7YONqakH37VZY3VofbvKXBey2tre6Q-bxGDNYX5OTpxuor34qVPy_jB_mz3ly-fHxex-mRuGdMg5lQhYSSeLktEKnXGc3mLBDEClNXOyxqJAIU0JWFMnnASeJqUUdV0h8Cm5Gvf2ofvc2jiodbcNbTqpeGLBJabfkouNLhO6GIN1qg9-o8NeAVUHZGpEphIy9Y1M7VKIj6GYzO3Kht_V_6S-AKdtbsY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3100357016</pqid></control><display><type>article</type><title>ESRL: efficient similarity representation learning for deepfake detection</title><source>SpringerLink Journals - AutoHoldings</source><creator>Wang, Feng ; Zhang, Dengyong ; Guo, Zhiqing ; Wang, Dewang ; Yang, Gaobo</creator><creatorcontrib>Wang, Feng ; Zhang, Dengyong ; Guo, Zhiqing ; Wang, Dewang ; Yang, Gaobo</creatorcontrib><description>For Deepfake detection, many existing works use the cross-entropy loss to enforce the classifier network to learn the mapping relationship from the RGB domain to the class domain, lacking an explicit constraint to guide the feature extraction network to learn discriminative features from an input image. This constrains the feature representation capability to expose deepfake. In this work, we analyze the feature extraction network in terms of both difference and similarity capabilities and propose a new constraint called similarity loss (SL) to improve the detection performance of the convolutional neural network (CNN) based detector. Moreover, according to the experimental results of the SL on data augmentation effectiveness, we propose a simple yet efficient framework, which is called as efficient similarity representation learning (ESRL), for deepfake detection. Extensive experiments on three public datasets (namely FF++, DFDC, and Celeb-DF) show that the feature extraction network trained with the help of SL can map forged faces and real faces to different feature embedding and map the same type of forged faces to similar feature embedding.</description><identifier>ISSN: 1573-7721</identifier><identifier>ISSN: 1380-7501</identifier><identifier>EISSN: 1573-7721</identifier><identifier>DOI: 10.1007/s11042-024-18447-x</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Artificial neural networks ; Computer Communication Networks ; Computer Science ; Constraints ; Data augmentation ; Data Structures and Information Theory ; Deception ; Deepfake ; Embedding ; Feature extraction ; Machine learning ; Multimedia Information Systems ; Representations ; Similarity ; Special Purpose and Application-Based Systems ; Track 6: Computer Vision for Multimedia Applications</subject><ispartof>Multimedia tools and applications, 2024-02, Vol.83 (31), p.76991-77007</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c270t-305717b5f56820b7fcf309762c11baa2f5d766745c817d0f4f5131ba854ddb713</cites><orcidid>0000-0003-2734-659X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11042-024-18447-x$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11042-024-18447-x$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Wang, Feng</creatorcontrib><creatorcontrib>Zhang, Dengyong</creatorcontrib><creatorcontrib>Guo, Zhiqing</creatorcontrib><creatorcontrib>Wang, Dewang</creatorcontrib><creatorcontrib>Yang, Gaobo</creatorcontrib><title>ESRL: efficient similarity representation learning for deepfake detection</title><title>Multimedia tools and applications</title><addtitle>Multimed Tools Appl</addtitle><description>For Deepfake detection, many existing works use the cross-entropy loss to enforce the classifier network to learn the mapping relationship from the RGB domain to the class domain, lacking an explicit constraint to guide the feature extraction network to learn discriminative features from an input image. This constrains the feature representation capability to expose deepfake. In this work, we analyze the feature extraction network in terms of both difference and similarity capabilities and propose a new constraint called similarity loss (SL) to improve the detection performance of the convolutional neural network (CNN) based detector. Moreover, according to the experimental results of the SL on data augmentation effectiveness, we propose a simple yet efficient framework, which is called as efficient similarity representation learning (ESRL), for deepfake detection. Extensive experiments on three public datasets (namely FF++, DFDC, and Celeb-DF) show that the feature extraction network trained with the help of SL can map forged faces and real faces to different feature embedding and map the same type of forged faces to similar feature embedding.</description><subject>Artificial neural networks</subject><subject>Computer Communication Networks</subject><subject>Computer Science</subject><subject>Constraints</subject><subject>Data augmentation</subject><subject>Data Structures and Information Theory</subject><subject>Deception</subject><subject>Deepfake</subject><subject>Embedding</subject><subject>Feature extraction</subject><subject>Machine learning</subject><subject>Multimedia Information Systems</subject><subject>Representations</subject><subject>Similarity</subject><subject>Special Purpose and Application-Based Systems</subject><subject>Track 6: Computer Vision for Multimedia Applications</subject><issn>1573-7721</issn><issn>1380-7501</issn><issn>1573-7721</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LAzEQhoMoWKt_wNOC59VMPnZWb1KqFgqCH-eQzSYldbu7Jlto_72pK-jJ07zMvO8M8xByCfQaKMWbCEAFyykTOZRCYL47IhOQyHNEBsd_9Ck5i3FNKRSSiQlZzF9flneZdc4bb9shi37jGx38sM-C7YONqakH37VZY3VofbvKXBey2tre6Q-bxGDNYX5OTpxuor34qVPy_jB_mz3ly-fHxex-mRuGdMg5lQhYSSeLktEKnXGc3mLBDEClNXOyxqJAIU0JWFMnnASeJqUUdV0h8Cm5Gvf2ofvc2jiodbcNbTqpeGLBJabfkouNLhO6GIN1qg9-o8NeAVUHZGpEphIy9Y1M7VKIj6GYzO3Kht_V_6S-AKdtbsY</recordid><startdate>20240221</startdate><enddate>20240221</enddate><creator>Wang, Feng</creator><creator>Zhang, Dengyong</creator><creator>Guo, Zhiqing</creator><creator>Wang, Dewang</creator><creator>Yang, Gaobo</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0003-2734-659X</orcidid></search><sort><creationdate>20240221</creationdate><title>ESRL: efficient similarity representation learning for deepfake detection</title><author>Wang, Feng ; Zhang, Dengyong ; Guo, Zhiqing ; Wang, Dewang ; Yang, Gaobo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c270t-305717b5f56820b7fcf309762c11baa2f5d766745c817d0f4f5131ba854ddb713</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Artificial neural networks</topic><topic>Computer Communication Networks</topic><topic>Computer Science</topic><topic>Constraints</topic><topic>Data augmentation</topic><topic>Data Structures and Information Theory</topic><topic>Deception</topic><topic>Deepfake</topic><topic>Embedding</topic><topic>Feature extraction</topic><topic>Machine learning</topic><topic>Multimedia Information Systems</topic><topic>Representations</topic><topic>Similarity</topic><topic>Special Purpose and Application-Based Systems</topic><topic>Track 6: Computer Vision for Multimedia Applications</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Feng</creatorcontrib><creatorcontrib>Zhang, Dengyong</creatorcontrib><creatorcontrib>Guo, Zhiqing</creatorcontrib><creatorcontrib>Wang, Dewang</creatorcontrib><creatorcontrib>Yang, Gaobo</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Multimedia tools and applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Feng</au><au>Zhang, Dengyong</au><au>Guo, Zhiqing</au><au>Wang, Dewang</au><au>Yang, Gaobo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>ESRL: efficient similarity representation learning for deepfake detection</atitle><jtitle>Multimedia tools and applications</jtitle><stitle>Multimed Tools Appl</stitle><date>2024-02-21</date><risdate>2024</risdate><volume>83</volume><issue>31</issue><spage>76991</spage><epage>77007</epage><pages>76991-77007</pages><issn>1573-7721</issn><issn>1380-7501</issn><eissn>1573-7721</eissn><abstract>For Deepfake detection, many existing works use the cross-entropy loss to enforce the classifier network to learn the mapping relationship from the RGB domain to the class domain, lacking an explicit constraint to guide the feature extraction network to learn discriminative features from an input image. This constrains the feature representation capability to expose deepfake. In this work, we analyze the feature extraction network in terms of both difference and similarity capabilities and propose a new constraint called similarity loss (SL) to improve the detection performance of the convolutional neural network (CNN) based detector. Moreover, according to the experimental results of the SL on data augmentation effectiveness, we propose a simple yet efficient framework, which is called as efficient similarity representation learning (ESRL), for deepfake detection. Extensive experiments on three public datasets (namely FF++, DFDC, and Celeb-DF) show that the feature extraction network trained with the help of SL can map forged faces and real faces to different feature embedding and map the same type of forged faces to similar feature embedding.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11042-024-18447-x</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0003-2734-659X</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1573-7721 |
ispartof | Multimedia tools and applications, 2024-02, Vol.83 (31), p.76991-77007 |
issn | 1573-7721 1380-7501 1573-7721 |
language | eng |
recordid | cdi_proquest_journals_3100357016 |
source | SpringerLink Journals - AutoHoldings |
subjects | Artificial neural networks Computer Communication Networks Computer Science Constraints Data augmentation Data Structures and Information Theory Deception Deepfake Embedding Feature extraction Machine learning Multimedia Information Systems Representations Similarity Special Purpose and Application-Based Systems Track 6: Computer Vision for Multimedia Applications |
title | ESRL: efficient similarity representation learning for deepfake detection |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T21%3A27%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=ESRL:%20efficient%20similarity%20representation%20learning%20for%20deepfake%20detection&rft.jtitle=Multimedia%20tools%20and%20applications&rft.au=Wang,%20Feng&rft.date=2024-02-21&rft.volume=83&rft.issue=31&rft.spage=76991&rft.epage=77007&rft.pages=76991-77007&rft.issn=1573-7721&rft.eissn=1573-7721&rft_id=info:doi/10.1007/s11042-024-18447-x&rft_dat=%3Cproquest_cross%3E3100357016%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3100357016&rft_id=info:pmid/&rfr_iscdi=true |