365-OR: Maladaptive Sensory Plasticity via α2δ1-subunit Promotes Adipose Tissue Lipolysis after Spinal Cord Injury

Spinal cord injury (SCI) leads to a progressive decline in metabolic homeostasis. Thus far, it is unclear whether the underlying cause of metabolic complications after SCI may be linked to the dysregulation of adipose tissue. The sympathetic nervous system and sensory neurons with cell bodies locate...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Diabetes (New York, N.Y.) N.Y.), 2024-06, Vol.73 (Supplement_1), p.1
Hauptverfasser: ROY, DEBASISH, DION, ELLIOT G., SEPEDA, JESSE A., PENG, JUAN, TOWNSEND, KRISTY L., SAS, ANDREW, SUN, WENJING, TEDESCHI, ANDREA
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue Supplement_1
container_start_page 1
container_title Diabetes (New York, N.Y.)
container_volume 73
creator ROY, DEBASISH
DION, ELLIOT G.
SEPEDA, JESSE A.
PENG, JUAN
TOWNSEND, KRISTY L.
SAS, ANDREW
SUN, WENJING
TEDESCHI, ANDREA
description Spinal cord injury (SCI) leads to a progressive decline in metabolic homeostasis. Thus far, it is unclear whether the underlying cause of metabolic complications after SCI may be linked to the dysregulation of adipose tissue. The sympathetic nervous system and sensory neurons with cell bodies located in the dorsal root ganglia (DRG) innervate white adipose tissue (WAT). However, the extent to which sensory innervation drives WAT function under normal and pathophysiological conditions has remained elusive. To investigate structural changes in WAT, we subjected adult mice to a thoracic (T)12 SCI that completely transected sensory axons without impacting sympathetic nerve activity. Whereas no changes were observed in iWAT, we found an increase in the percentage of small-size adipocytes in eWAT, a phenotype associated with rapid lipid partitioning. Our biochemical and molecular analysis confirmed that SCI exacerbates lipolysis in eWAT but not in iWAT. After injury, maladaptive reorganization of neuronal circuits can cause aberrant neuron firing that eventually culminates in the onset of post-traumatic disorders. We and others have demonstrated a strong convergence between the rearrangement of neuronal circuits and the expression of α2δ subunits of VGCC. α2δ subunits positively regulate neurotransmitter release by increasing plasma membrane expression of VGCC. We discovered that α2δ1 expression increases in CGRP+ DRG neurons that project to eWAT 7 days after SCI. Conditional deletion of the gene encoding α2δ1 in these neurons normalizes eWAT lipolysis after SCI. Using a clinically relevant strategy, we demonstrated that α2δ1 pharmacological blockade also normalizes eWAT lipolysis after SCI, thereby preventing ectopic lipid accumulation in the liver. Thus, our study provides novel insight into the molecular basis of maladaptive sensory processing in eWAT, facilitating the development of strategies to promote metabolic health after SCI.
doi_str_mv 10.2337/db24-365-OR
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3100300747</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3100300747</sourcerecordid><originalsourceid>FETCH-LOGICAL-c647-1611726fe228a1cea933fbd7aa4729eadca98bb49091e8a2c8afeadb376465813</originalsourceid><addsrcrecordid>eNotkMtqwzAQRUVpoWnaVX9A0GVRq4djWd2F0EcgJSHJojsxtmVQcCxXkgP-rEK_I99Uh5RZDDMcLpeD0D2jT1wI-VzmPCEinZDl-gKNmBKKCC6_LtGIUsYJk0peo5sQdpTSdJgRimf6BX9CDSW00R4M3pgmON_jVQ0h2sLGHh8s4OMPP_4yErq8a2zEK-_2LpqAp6VtXTB4a0PoDF4MV90HGzBU0Xi8aW0DNZ45X-J5s-t8f4uuKqiDufvfY7R9e93OPshi-T6fTRekSBNJWMqY5GllOM-AFQaUEFVeSoBEcmWgLEBleZ4oqpjJgBcZVMM3FzJN0knGxBg9nGNb7747E6Leuc4PXYIWjFJBqUzkQD2eqcK7ELypdOvtHnyvGdUnq_pkVQ-e9HIt_gBxQmyu</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3100300747</pqid></control><display><type>article</type><title>365-OR: Maladaptive Sensory Plasticity via α2δ1-subunit Promotes Adipose Tissue Lipolysis after Spinal Cord Injury</title><source>EZB-FREE-00999 freely available EZB journals</source><creator>ROY, DEBASISH ; DION, ELLIOT G. ; SEPEDA, JESSE A. ; PENG, JUAN ; TOWNSEND, KRISTY L. ; SAS, ANDREW ; SUN, WENJING ; TEDESCHI, ANDREA</creator><creatorcontrib>ROY, DEBASISH ; DION, ELLIOT G. ; SEPEDA, JESSE A. ; PENG, JUAN ; TOWNSEND, KRISTY L. ; SAS, ANDREW ; SUN, WENJING ; TEDESCHI, ANDREA</creatorcontrib><description>Spinal cord injury (SCI) leads to a progressive decline in metabolic homeostasis. Thus far, it is unclear whether the underlying cause of metabolic complications after SCI may be linked to the dysregulation of adipose tissue. The sympathetic nervous system and sensory neurons with cell bodies located in the dorsal root ganglia (DRG) innervate white adipose tissue (WAT). However, the extent to which sensory innervation drives WAT function under normal and pathophysiological conditions has remained elusive. To investigate structural changes in WAT, we subjected adult mice to a thoracic (T)12 SCI that completely transected sensory axons without impacting sympathetic nerve activity. Whereas no changes were observed in iWAT, we found an increase in the percentage of small-size adipocytes in eWAT, a phenotype associated with rapid lipid partitioning. Our biochemical and molecular analysis confirmed that SCI exacerbates lipolysis in eWAT but not in iWAT. After injury, maladaptive reorganization of neuronal circuits can cause aberrant neuron firing that eventually culminates in the onset of post-traumatic disorders. We and others have demonstrated a strong convergence between the rearrangement of neuronal circuits and the expression of α2δ subunits of VGCC. α2δ subunits positively regulate neurotransmitter release by increasing plasma membrane expression of VGCC. We discovered that α2δ1 expression increases in CGRP+ DRG neurons that project to eWAT 7 days after SCI. Conditional deletion of the gene encoding α2δ1 in these neurons normalizes eWAT lipolysis after SCI. Using a clinically relevant strategy, we demonstrated that α2δ1 pharmacological blockade also normalizes eWAT lipolysis after SCI, thereby preventing ectopic lipid accumulation in the liver. Thus, our study provides novel insight into the molecular basis of maladaptive sensory processing in eWAT, facilitating the development of strategies to promote metabolic health after SCI.</description><identifier>ISSN: 0012-1797</identifier><identifier>EISSN: 1939-327X</identifier><identifier>DOI: 10.2337/db24-365-OR</identifier><language>eng</language><publisher>New York: American Diabetes Association</publisher><subject>Adipocytes ; Adipose tissue ; Axons ; Body fat ; Calcitonin gene-related peptide ; Dorsal root ganglia ; Gene deletion ; Gene rearrangement ; Homeostasis ; Information processing ; Innervation ; Lipolysis ; Metabolism ; Neurons ; Neurotransmitter release ; Phenotypes ; Sensory integration ; Sensory neurons ; Spinal cord injuries ; Spinal plasticity ; Sympathetic nerves ; Sympathetic nervous system ; Thorax</subject><ispartof>Diabetes (New York, N.Y.), 2024-06, Vol.73 (Supplement_1), p.1</ispartof><rights>Copyright American Diabetes Association Jun 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>ROY, DEBASISH</creatorcontrib><creatorcontrib>DION, ELLIOT G.</creatorcontrib><creatorcontrib>SEPEDA, JESSE A.</creatorcontrib><creatorcontrib>PENG, JUAN</creatorcontrib><creatorcontrib>TOWNSEND, KRISTY L.</creatorcontrib><creatorcontrib>SAS, ANDREW</creatorcontrib><creatorcontrib>SUN, WENJING</creatorcontrib><creatorcontrib>TEDESCHI, ANDREA</creatorcontrib><title>365-OR: Maladaptive Sensory Plasticity via α2δ1-subunit Promotes Adipose Tissue Lipolysis after Spinal Cord Injury</title><title>Diabetes (New York, N.Y.)</title><description>Spinal cord injury (SCI) leads to a progressive decline in metabolic homeostasis. Thus far, it is unclear whether the underlying cause of metabolic complications after SCI may be linked to the dysregulation of adipose tissue. The sympathetic nervous system and sensory neurons with cell bodies located in the dorsal root ganglia (DRG) innervate white adipose tissue (WAT). However, the extent to which sensory innervation drives WAT function under normal and pathophysiological conditions has remained elusive. To investigate structural changes in WAT, we subjected adult mice to a thoracic (T)12 SCI that completely transected sensory axons without impacting sympathetic nerve activity. Whereas no changes were observed in iWAT, we found an increase in the percentage of small-size adipocytes in eWAT, a phenotype associated with rapid lipid partitioning. Our biochemical and molecular analysis confirmed that SCI exacerbates lipolysis in eWAT but not in iWAT. After injury, maladaptive reorganization of neuronal circuits can cause aberrant neuron firing that eventually culminates in the onset of post-traumatic disorders. We and others have demonstrated a strong convergence between the rearrangement of neuronal circuits and the expression of α2δ subunits of VGCC. α2δ subunits positively regulate neurotransmitter release by increasing plasma membrane expression of VGCC. We discovered that α2δ1 expression increases in CGRP+ DRG neurons that project to eWAT 7 days after SCI. Conditional deletion of the gene encoding α2δ1 in these neurons normalizes eWAT lipolysis after SCI. Using a clinically relevant strategy, we demonstrated that α2δ1 pharmacological blockade also normalizes eWAT lipolysis after SCI, thereby preventing ectopic lipid accumulation in the liver. Thus, our study provides novel insight into the molecular basis of maladaptive sensory processing in eWAT, facilitating the development of strategies to promote metabolic health after SCI.</description><subject>Adipocytes</subject><subject>Adipose tissue</subject><subject>Axons</subject><subject>Body fat</subject><subject>Calcitonin gene-related peptide</subject><subject>Dorsal root ganglia</subject><subject>Gene deletion</subject><subject>Gene rearrangement</subject><subject>Homeostasis</subject><subject>Information processing</subject><subject>Innervation</subject><subject>Lipolysis</subject><subject>Metabolism</subject><subject>Neurons</subject><subject>Neurotransmitter release</subject><subject>Phenotypes</subject><subject>Sensory integration</subject><subject>Sensory neurons</subject><subject>Spinal cord injuries</subject><subject>Spinal plasticity</subject><subject>Sympathetic nerves</subject><subject>Sympathetic nervous system</subject><subject>Thorax</subject><issn>0012-1797</issn><issn>1939-327X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNotkMtqwzAQRUVpoWnaVX9A0GVRq4djWd2F0EcgJSHJojsxtmVQcCxXkgP-rEK_I99Uh5RZDDMcLpeD0D2jT1wI-VzmPCEinZDl-gKNmBKKCC6_LtGIUsYJk0peo5sQdpTSdJgRimf6BX9CDSW00R4M3pgmON_jVQ0h2sLGHh8s4OMPP_4yErq8a2zEK-_2LpqAp6VtXTB4a0PoDF4MV90HGzBU0Xi8aW0DNZ45X-J5s-t8f4uuKqiDufvfY7R9e93OPshi-T6fTRekSBNJWMqY5GllOM-AFQaUEFVeSoBEcmWgLEBleZ4oqpjJgBcZVMM3FzJN0knGxBg9nGNb7747E6Leuc4PXYIWjFJBqUzkQD2eqcK7ELypdOvtHnyvGdUnq_pkVQ-e9HIt_gBxQmyu</recordid><startdate>20240614</startdate><enddate>20240614</enddate><creator>ROY, DEBASISH</creator><creator>DION, ELLIOT G.</creator><creator>SEPEDA, JESSE A.</creator><creator>PENG, JUAN</creator><creator>TOWNSEND, KRISTY L.</creator><creator>SAS, ANDREW</creator><creator>SUN, WENJING</creator><creator>TEDESCHI, ANDREA</creator><general>American Diabetes Association</general><scope>AAYXX</scope><scope>CITATION</scope><scope>K9.</scope><scope>NAPCQ</scope></search><sort><creationdate>20240614</creationdate><title>365-OR: Maladaptive Sensory Plasticity via α2δ1-subunit Promotes Adipose Tissue Lipolysis after Spinal Cord Injury</title><author>ROY, DEBASISH ; DION, ELLIOT G. ; SEPEDA, JESSE A. ; PENG, JUAN ; TOWNSEND, KRISTY L. ; SAS, ANDREW ; SUN, WENJING ; TEDESCHI, ANDREA</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c647-1611726fe228a1cea933fbd7aa4729eadca98bb49091e8a2c8afeadb376465813</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Adipocytes</topic><topic>Adipose tissue</topic><topic>Axons</topic><topic>Body fat</topic><topic>Calcitonin gene-related peptide</topic><topic>Dorsal root ganglia</topic><topic>Gene deletion</topic><topic>Gene rearrangement</topic><topic>Homeostasis</topic><topic>Information processing</topic><topic>Innervation</topic><topic>Lipolysis</topic><topic>Metabolism</topic><topic>Neurons</topic><topic>Neurotransmitter release</topic><topic>Phenotypes</topic><topic>Sensory integration</topic><topic>Sensory neurons</topic><topic>Spinal cord injuries</topic><topic>Spinal plasticity</topic><topic>Sympathetic nerves</topic><topic>Sympathetic nervous system</topic><topic>Thorax</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>ROY, DEBASISH</creatorcontrib><creatorcontrib>DION, ELLIOT G.</creatorcontrib><creatorcontrib>SEPEDA, JESSE A.</creatorcontrib><creatorcontrib>PENG, JUAN</creatorcontrib><creatorcontrib>TOWNSEND, KRISTY L.</creatorcontrib><creatorcontrib>SAS, ANDREW</creatorcontrib><creatorcontrib>SUN, WENJING</creatorcontrib><creatorcontrib>TEDESCHI, ANDREA</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Nursing &amp; Allied Health Premium</collection><jtitle>Diabetes (New York, N.Y.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>ROY, DEBASISH</au><au>DION, ELLIOT G.</au><au>SEPEDA, JESSE A.</au><au>PENG, JUAN</au><au>TOWNSEND, KRISTY L.</au><au>SAS, ANDREW</au><au>SUN, WENJING</au><au>TEDESCHI, ANDREA</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>365-OR: Maladaptive Sensory Plasticity via α2δ1-subunit Promotes Adipose Tissue Lipolysis after Spinal Cord Injury</atitle><jtitle>Diabetes (New York, N.Y.)</jtitle><date>2024-06-14</date><risdate>2024</risdate><volume>73</volume><issue>Supplement_1</issue><spage>1</spage><pages>1-</pages><issn>0012-1797</issn><eissn>1939-327X</eissn><abstract>Spinal cord injury (SCI) leads to a progressive decline in metabolic homeostasis. Thus far, it is unclear whether the underlying cause of metabolic complications after SCI may be linked to the dysregulation of adipose tissue. The sympathetic nervous system and sensory neurons with cell bodies located in the dorsal root ganglia (DRG) innervate white adipose tissue (WAT). However, the extent to which sensory innervation drives WAT function under normal and pathophysiological conditions has remained elusive. To investigate structural changes in WAT, we subjected adult mice to a thoracic (T)12 SCI that completely transected sensory axons without impacting sympathetic nerve activity. Whereas no changes were observed in iWAT, we found an increase in the percentage of small-size adipocytes in eWAT, a phenotype associated with rapid lipid partitioning. Our biochemical and molecular analysis confirmed that SCI exacerbates lipolysis in eWAT but not in iWAT. After injury, maladaptive reorganization of neuronal circuits can cause aberrant neuron firing that eventually culminates in the onset of post-traumatic disorders. We and others have demonstrated a strong convergence between the rearrangement of neuronal circuits and the expression of α2δ subunits of VGCC. α2δ subunits positively regulate neurotransmitter release by increasing plasma membrane expression of VGCC. We discovered that α2δ1 expression increases in CGRP+ DRG neurons that project to eWAT 7 days after SCI. Conditional deletion of the gene encoding α2δ1 in these neurons normalizes eWAT lipolysis after SCI. Using a clinically relevant strategy, we demonstrated that α2δ1 pharmacological blockade also normalizes eWAT lipolysis after SCI, thereby preventing ectopic lipid accumulation in the liver. Thus, our study provides novel insight into the molecular basis of maladaptive sensory processing in eWAT, facilitating the development of strategies to promote metabolic health after SCI.</abstract><cop>New York</cop><pub>American Diabetes Association</pub><doi>10.2337/db24-365-OR</doi></addata></record>
fulltext fulltext
identifier ISSN: 0012-1797
ispartof Diabetes (New York, N.Y.), 2024-06, Vol.73 (Supplement_1), p.1
issn 0012-1797
1939-327X
language eng
recordid cdi_proquest_journals_3100300747
source EZB-FREE-00999 freely available EZB journals
subjects Adipocytes
Adipose tissue
Axons
Body fat
Calcitonin gene-related peptide
Dorsal root ganglia
Gene deletion
Gene rearrangement
Homeostasis
Information processing
Innervation
Lipolysis
Metabolism
Neurons
Neurotransmitter release
Phenotypes
Sensory integration
Sensory neurons
Spinal cord injuries
Spinal plasticity
Sympathetic nerves
Sympathetic nervous system
Thorax
title 365-OR: Maladaptive Sensory Plasticity via α2δ1-subunit Promotes Adipose Tissue Lipolysis after Spinal Cord Injury
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T22%3A08%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=365-OR:%20Maladaptive%20Sensory%20Plasticity%20via%20%CE%B12%CE%B41-subunit%20Promotes%20Adipose%20Tissue%20Lipolysis%20after%20Spinal%20Cord%20Injury&rft.jtitle=Diabetes%20(New%20York,%20N.Y.)&rft.au=ROY,%20DEBASISH&rft.date=2024-06-14&rft.volume=73&rft.issue=Supplement_1&rft.spage=1&rft.pages=1-&rft.issn=0012-1797&rft.eissn=1939-327X&rft_id=info:doi/10.2337/db24-365-OR&rft_dat=%3Cproquest_cross%3E3100300747%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3100300747&rft_id=info:pmid/&rfr_iscdi=true