Exciting Surface Plasmon Resonances on Gold Thin Film‐Coated Optical Fibers Through Nanoparticle Light Scattering

Surface plasmon resonance (SPR) conventionally occurs at the interface of a thin metallic film and an external dielectric medium in fiber optics through core‐guided light. However, this work introduces theoretical and experimental evidence suggesting that the SPR in optical fibers can also be induce...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced optical materials 2024-09, Vol.12 (25), p.n/a
Hauptverfasser: Mendes, João P., dos Santos, Paulo S. S., Dias, Bernardo, Núñez‐Sánchez, Sara, Pastoriza‐Santos, I., Pérez‐Juste, Jorge, Pereira, Carlos M., Jorge, Pedro A. S., Almeida, José M. M. M., Coelho, Luís C. C.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 25
container_start_page
container_title Advanced optical materials
container_volume 12
creator Mendes, João P.
dos Santos, Paulo S. S.
Dias, Bernardo
Núñez‐Sánchez, Sara
Pastoriza‐Santos, I.
Pérez‐Juste, Jorge
Pereira, Carlos M.
Jorge, Pedro A. S.
Almeida, José M. M. M.
Coelho, Luís C. C.
description Surface plasmon resonance (SPR) conventionally occurs at the interface of a thin metallic film and an external dielectric medium in fiber optics through core‐guided light. However, this work introduces theoretical and experimental evidence suggesting that the SPR in optical fibers can also be induced through light scattering from Au nanoparticles (NPs) on the thin metallic film, defined as nanoparticle‐induced SPR (NPI‐SPR). This method adheres to phase‐matching conditions between SPR dispersion curves and the wave vectors of scattered light from Au NPs. Experimentally, these conditions are met on an etched optical fiber, enabling direct interaction between light and immobilized Au NPs. Compared to SPR, NPI‐SPR exhibits stronger field intensity in the external region and wavelength tuning capabilities (750 to 1250 nm) by varying Au NP diameters (20 to 90 nm). NPI‐SPR demonstrates refractive index sensitivities of 4000 to 4416 nm per refractive index unit, nearly double those of typical SPR using the same optical fiber configuration sans Au NPs. Additionally, NPI‐SPR fiber configuration has demonstrated its applicability for developing biosensors, achieving a remarkable limit of detection of 0.004 nm for thrombin protein evaluation, a twenty‐fold enhancement compared to typical SPR. These findings underscore the intrinsic advantages of NPI‐SPR for sensing. Surface plasmon resonance (SPR) typically occurs at the interface of a thin metallic film and a dielectric medium in fiber optics. This work presents evidence of nanoparticle‐induced SPR (NPI‐SPR) in optical fibers through light scattering from Au nanoparticles on the thin metallic film. NPI‐SPR offers stronger field intensity, wavelength tuning, and enhanced refractive index sensitivities, making it advantageous for biosensing applications.
doi_str_mv 10.1002/adom.202400433
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3099982466</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3099982466</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2023-ed2811d2b6eecee8664c9cbce7669bc23eaa3263f72cbde5d2b8c48a810e81b93</originalsourceid><addsrcrecordid>eNqFkMtOwkAUhhujiQTZup7EdXEuZdpZEgQ0QTGC68l0egolbafOtFF2PoLP6JM4BKPuXJ3b95-T8wfBJcFDgjG9VpmphhTTCOOIsZOgR4kYhQTH5PRPfh4MnNthjH3BRBT3Ajd900Vb1Bu06myuNKDHUrnK1OgJnKlVrcEhX81NmaH1tqjRrCirz_ePiVEtZGjZtIVWpe-mYJ0nrOk2W_SgatMo62cloEWx2bZopVXbgvWnLoKzXJUOBt-xHzzPpuvJbbhYzu8m40Wo_SMshIwmhGQ05QAaIOE80kKnGmLORaopA6UY5SyPqU4zGHky0VGiEoIhIalg_eDquLex5qUD18qd6WztT0qGhRAJjTj31PBIaWucs5DLxhaVsntJsDx4Kw_eyh9vvUAcBa9FCft_aDm-Wd7_ar8AGgV_7Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3099982466</pqid></control><display><type>article</type><title>Exciting Surface Plasmon Resonances on Gold Thin Film‐Coated Optical Fibers Through Nanoparticle Light Scattering</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Mendes, João P. ; dos Santos, Paulo S. S. ; Dias, Bernardo ; Núñez‐Sánchez, Sara ; Pastoriza‐Santos, I. ; Pérez‐Juste, Jorge ; Pereira, Carlos M. ; Jorge, Pedro A. S. ; Almeida, José M. M. M. ; Coelho, Luís C. C.</creator><creatorcontrib>Mendes, João P. ; dos Santos, Paulo S. S. ; Dias, Bernardo ; Núñez‐Sánchez, Sara ; Pastoriza‐Santos, I. ; Pérez‐Juste, Jorge ; Pereira, Carlos M. ; Jorge, Pedro A. S. ; Almeida, José M. M. M. ; Coelho, Luís C. C.</creatorcontrib><description>Surface plasmon resonance (SPR) conventionally occurs at the interface of a thin metallic film and an external dielectric medium in fiber optics through core‐guided light. However, this work introduces theoretical and experimental evidence suggesting that the SPR in optical fibers can also be induced through light scattering from Au nanoparticles (NPs) on the thin metallic film, defined as nanoparticle‐induced SPR (NPI‐SPR). This method adheres to phase‐matching conditions between SPR dispersion curves and the wave vectors of scattered light from Au NPs. Experimentally, these conditions are met on an etched optical fiber, enabling direct interaction between light and immobilized Au NPs. Compared to SPR, NPI‐SPR exhibits stronger field intensity in the external region and wavelength tuning capabilities (750 to 1250 nm) by varying Au NP diameters (20 to 90 nm). NPI‐SPR demonstrates refractive index sensitivities of 4000 to 4416 nm per refractive index unit, nearly double those of typical SPR using the same optical fiber configuration sans Au NPs. Additionally, NPI‐SPR fiber configuration has demonstrated its applicability for developing biosensors, achieving a remarkable limit of detection of 0.004 nm for thrombin protein evaluation, a twenty‐fold enhancement compared to typical SPR. These findings underscore the intrinsic advantages of NPI‐SPR for sensing. Surface plasmon resonance (SPR) typically occurs at the interface of a thin metallic film and a dielectric medium in fiber optics. This work presents evidence of nanoparticle‐induced SPR (NPI‐SPR) in optical fibers through light scattering from Au nanoparticles on the thin metallic film. NPI‐SPR offers stronger field intensity, wavelength tuning, and enhanced refractive index sensitivities, making it advantageous for biosensing applications.</description><identifier>ISSN: 2195-1071</identifier><identifier>EISSN: 2195-1071</identifier><identifier>DOI: 10.1002/adom.202400433</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>biosensing ; Biosensors ; Coated fibers ; Configurations ; Dispersion curve analysis ; Fiber optics ; Gold ; Light scattering ; Luminous intensity ; Nanoparticles ; nanoparticle‐on‐film ; optical fiber sensor ; Optical fibers ; Phase matching ; plasmonic nanoparticles ; plasmonic sensing ; Refractivity ; Resonance scattering ; Surface plasmon resonance ; Thin films ; Thrombin ; Wave dispersion</subject><ispartof>Advanced optical materials, 2024-09, Vol.12 (25), p.n/a</ispartof><rights>2024 The Author(s). Advanced Optical Materials published by Wiley‐VCH GmbH</rights><rights>2024. This article is published under http://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2023-ed2811d2b6eecee8664c9cbce7669bc23eaa3263f72cbde5d2b8c48a810e81b93</cites><orcidid>0000-0002-4614-1699 ; 0000-0002-1091-1364</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadom.202400433$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadom.202400433$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Mendes, João P.</creatorcontrib><creatorcontrib>dos Santos, Paulo S. S.</creatorcontrib><creatorcontrib>Dias, Bernardo</creatorcontrib><creatorcontrib>Núñez‐Sánchez, Sara</creatorcontrib><creatorcontrib>Pastoriza‐Santos, I.</creatorcontrib><creatorcontrib>Pérez‐Juste, Jorge</creatorcontrib><creatorcontrib>Pereira, Carlos M.</creatorcontrib><creatorcontrib>Jorge, Pedro A. S.</creatorcontrib><creatorcontrib>Almeida, José M. M. M.</creatorcontrib><creatorcontrib>Coelho, Luís C. C.</creatorcontrib><title>Exciting Surface Plasmon Resonances on Gold Thin Film‐Coated Optical Fibers Through Nanoparticle Light Scattering</title><title>Advanced optical materials</title><description>Surface plasmon resonance (SPR) conventionally occurs at the interface of a thin metallic film and an external dielectric medium in fiber optics through core‐guided light. However, this work introduces theoretical and experimental evidence suggesting that the SPR in optical fibers can also be induced through light scattering from Au nanoparticles (NPs) on the thin metallic film, defined as nanoparticle‐induced SPR (NPI‐SPR). This method adheres to phase‐matching conditions between SPR dispersion curves and the wave vectors of scattered light from Au NPs. Experimentally, these conditions are met on an etched optical fiber, enabling direct interaction between light and immobilized Au NPs. Compared to SPR, NPI‐SPR exhibits stronger field intensity in the external region and wavelength tuning capabilities (750 to 1250 nm) by varying Au NP diameters (20 to 90 nm). NPI‐SPR demonstrates refractive index sensitivities of 4000 to 4416 nm per refractive index unit, nearly double those of typical SPR using the same optical fiber configuration sans Au NPs. Additionally, NPI‐SPR fiber configuration has demonstrated its applicability for developing biosensors, achieving a remarkable limit of detection of 0.004 nm for thrombin protein evaluation, a twenty‐fold enhancement compared to typical SPR. These findings underscore the intrinsic advantages of NPI‐SPR for sensing. Surface plasmon resonance (SPR) typically occurs at the interface of a thin metallic film and a dielectric medium in fiber optics. This work presents evidence of nanoparticle‐induced SPR (NPI‐SPR) in optical fibers through light scattering from Au nanoparticles on the thin metallic film. NPI‐SPR offers stronger field intensity, wavelength tuning, and enhanced refractive index sensitivities, making it advantageous for biosensing applications.</description><subject>biosensing</subject><subject>Biosensors</subject><subject>Coated fibers</subject><subject>Configurations</subject><subject>Dispersion curve analysis</subject><subject>Fiber optics</subject><subject>Gold</subject><subject>Light scattering</subject><subject>Luminous intensity</subject><subject>Nanoparticles</subject><subject>nanoparticle‐on‐film</subject><subject>optical fiber sensor</subject><subject>Optical fibers</subject><subject>Phase matching</subject><subject>plasmonic nanoparticles</subject><subject>plasmonic sensing</subject><subject>Refractivity</subject><subject>Resonance scattering</subject><subject>Surface plasmon resonance</subject><subject>Thin films</subject><subject>Thrombin</subject><subject>Wave dispersion</subject><issn>2195-1071</issn><issn>2195-1071</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><recordid>eNqFkMtOwkAUhhujiQTZup7EdXEuZdpZEgQ0QTGC68l0egolbafOtFF2PoLP6JM4BKPuXJ3b95-T8wfBJcFDgjG9VpmphhTTCOOIsZOgR4kYhQTH5PRPfh4MnNthjH3BRBT3Ajd900Vb1Bu06myuNKDHUrnK1OgJnKlVrcEhX81NmaH1tqjRrCirz_ePiVEtZGjZtIVWpe-mYJ0nrOk2W_SgatMo62cloEWx2bZopVXbgvWnLoKzXJUOBt-xHzzPpuvJbbhYzu8m40Wo_SMshIwmhGQ05QAaIOE80kKnGmLORaopA6UY5SyPqU4zGHky0VGiEoIhIalg_eDquLex5qUD18qd6WztT0qGhRAJjTj31PBIaWucs5DLxhaVsntJsDx4Kw_eyh9vvUAcBa9FCft_aDm-Wd7_ar8AGgV_7Q</recordid><startdate>20240901</startdate><enddate>20240901</enddate><creator>Mendes, João P.</creator><creator>dos Santos, Paulo S. S.</creator><creator>Dias, Bernardo</creator><creator>Núñez‐Sánchez, Sara</creator><creator>Pastoriza‐Santos, I.</creator><creator>Pérez‐Juste, Jorge</creator><creator>Pereira, Carlos M.</creator><creator>Jorge, Pedro A. S.</creator><creator>Almeida, José M. M. M.</creator><creator>Coelho, Luís C. C.</creator><general>Wiley Subscription Services, Inc</general><scope>24P</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-4614-1699</orcidid><orcidid>https://orcid.org/0000-0002-1091-1364</orcidid></search><sort><creationdate>20240901</creationdate><title>Exciting Surface Plasmon Resonances on Gold Thin Film‐Coated Optical Fibers Through Nanoparticle Light Scattering</title><author>Mendes, João P. ; dos Santos, Paulo S. S. ; Dias, Bernardo ; Núñez‐Sánchez, Sara ; Pastoriza‐Santos, I. ; Pérez‐Juste, Jorge ; Pereira, Carlos M. ; Jorge, Pedro A. S. ; Almeida, José M. M. M. ; Coelho, Luís C. C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2023-ed2811d2b6eecee8664c9cbce7669bc23eaa3263f72cbde5d2b8c48a810e81b93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>biosensing</topic><topic>Biosensors</topic><topic>Coated fibers</topic><topic>Configurations</topic><topic>Dispersion curve analysis</topic><topic>Fiber optics</topic><topic>Gold</topic><topic>Light scattering</topic><topic>Luminous intensity</topic><topic>Nanoparticles</topic><topic>nanoparticle‐on‐film</topic><topic>optical fiber sensor</topic><topic>Optical fibers</topic><topic>Phase matching</topic><topic>plasmonic nanoparticles</topic><topic>plasmonic sensing</topic><topic>Refractivity</topic><topic>Resonance scattering</topic><topic>Surface plasmon resonance</topic><topic>Thin films</topic><topic>Thrombin</topic><topic>Wave dispersion</topic><toplevel>online_resources</toplevel><creatorcontrib>Mendes, João P.</creatorcontrib><creatorcontrib>dos Santos, Paulo S. S.</creatorcontrib><creatorcontrib>Dias, Bernardo</creatorcontrib><creatorcontrib>Núñez‐Sánchez, Sara</creatorcontrib><creatorcontrib>Pastoriza‐Santos, I.</creatorcontrib><creatorcontrib>Pérez‐Juste, Jorge</creatorcontrib><creatorcontrib>Pereira, Carlos M.</creatorcontrib><creatorcontrib>Jorge, Pedro A. S.</creatorcontrib><creatorcontrib>Almeida, José M. M. M.</creatorcontrib><creatorcontrib>Coelho, Luís C. C.</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Advanced optical materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mendes, João P.</au><au>dos Santos, Paulo S. S.</au><au>Dias, Bernardo</au><au>Núñez‐Sánchez, Sara</au><au>Pastoriza‐Santos, I.</au><au>Pérez‐Juste, Jorge</au><au>Pereira, Carlos M.</au><au>Jorge, Pedro A. S.</au><au>Almeida, José M. M. M.</au><au>Coelho, Luís C. C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Exciting Surface Plasmon Resonances on Gold Thin Film‐Coated Optical Fibers Through Nanoparticle Light Scattering</atitle><jtitle>Advanced optical materials</jtitle><date>2024-09-01</date><risdate>2024</risdate><volume>12</volume><issue>25</issue><epage>n/a</epage><issn>2195-1071</issn><eissn>2195-1071</eissn><abstract>Surface plasmon resonance (SPR) conventionally occurs at the interface of a thin metallic film and an external dielectric medium in fiber optics through core‐guided light. However, this work introduces theoretical and experimental evidence suggesting that the SPR in optical fibers can also be induced through light scattering from Au nanoparticles (NPs) on the thin metallic film, defined as nanoparticle‐induced SPR (NPI‐SPR). This method adheres to phase‐matching conditions between SPR dispersion curves and the wave vectors of scattered light from Au NPs. Experimentally, these conditions are met on an etched optical fiber, enabling direct interaction between light and immobilized Au NPs. Compared to SPR, NPI‐SPR exhibits stronger field intensity in the external region and wavelength tuning capabilities (750 to 1250 nm) by varying Au NP diameters (20 to 90 nm). NPI‐SPR demonstrates refractive index sensitivities of 4000 to 4416 nm per refractive index unit, nearly double those of typical SPR using the same optical fiber configuration sans Au NPs. Additionally, NPI‐SPR fiber configuration has demonstrated its applicability for developing biosensors, achieving a remarkable limit of detection of 0.004 nm for thrombin protein evaluation, a twenty‐fold enhancement compared to typical SPR. These findings underscore the intrinsic advantages of NPI‐SPR for sensing. Surface plasmon resonance (SPR) typically occurs at the interface of a thin metallic film and a dielectric medium in fiber optics. This work presents evidence of nanoparticle‐induced SPR (NPI‐SPR) in optical fibers through light scattering from Au nanoparticles on the thin metallic film. NPI‐SPR offers stronger field intensity, wavelength tuning, and enhanced refractive index sensitivities, making it advantageous for biosensing applications.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/adom.202400433</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-4614-1699</orcidid><orcidid>https://orcid.org/0000-0002-1091-1364</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2195-1071
ispartof Advanced optical materials, 2024-09, Vol.12 (25), p.n/a
issn 2195-1071
2195-1071
language eng
recordid cdi_proquest_journals_3099982466
source Wiley Online Library Journals Frontfile Complete
subjects biosensing
Biosensors
Coated fibers
Configurations
Dispersion curve analysis
Fiber optics
Gold
Light scattering
Luminous intensity
Nanoparticles
nanoparticle‐on‐film
optical fiber sensor
Optical fibers
Phase matching
plasmonic nanoparticles
plasmonic sensing
Refractivity
Resonance scattering
Surface plasmon resonance
Thin films
Thrombin
Wave dispersion
title Exciting Surface Plasmon Resonances on Gold Thin Film‐Coated Optical Fibers Through Nanoparticle Light Scattering
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T19%3A54%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Exciting%20Surface%20Plasmon%20Resonances%20on%20Gold%20Thin%20Film%E2%80%90Coated%20Optical%20Fibers%20Through%20Nanoparticle%20Light%20Scattering&rft.jtitle=Advanced%20optical%20materials&rft.au=Mendes,%20Jo%C3%A3o%20P.&rft.date=2024-09-01&rft.volume=12&rft.issue=25&rft.epage=n/a&rft.issn=2195-1071&rft.eissn=2195-1071&rft_id=info:doi/10.1002/adom.202400433&rft_dat=%3Cproquest_cross%3E3099982466%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3099982466&rft_id=info:pmid/&rfr_iscdi=true