Dynamic Resource Allocation Techniques for Wireless Network Data in Elastic Optical Network Applications
Different devices and applications in wireless networks share spectrum resources reasonably. However, there are still issues such as channel overlap and adjacent interference in spectrum allocation and utilization, making the process of data dynamic resource allocation more complex. Therefore, a new...
Gespeichert in:
Veröffentlicht in: | Mobile networks and applications 2023-10, Vol.28 (5), p.1712-1723 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1723 |
---|---|
container_issue | 5 |
container_start_page | 1712 |
container_title | Mobile networks and applications |
container_volume | 28 |
creator | Ge, Jing Wu, Kangcheng Jamal, Nasir Ullah, Farhan |
description | Different devices and applications in wireless networks share spectrum resources reasonably. However, there are still issues such as channel overlap and adjacent interference in spectrum allocation and utilization, making the process of data dynamic resource allocation more complex. Therefore, a new data dynamic resource allocation technique for wireless networks is proposed. An elastic optical wireless network is formed by combining elastic optical network and wireless network. A global constrained resource allocation optimization model is designed based on the threshold of the maximum frequency gap number occupied on the fiber core at the end of allocation. Then, by using the global optimization genetic algorithm, the optimal dynamic resource allocation results of the elastic optical wireless network are obtained. Experimental results show that the spectrum utilization obtained by this technology is higher when the number of cores is 12, and the spectrum utilization is significantly improved by employing the proposed method. |
doi_str_mv | 10.1007/s11036-023-02243-2 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3099950462</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3099950462</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-af3013c4d6a62e921c55dc85883f6f426f2a5b727c6b78ceb919388c9aa2fef63</originalsourceid><addsrcrecordid>eNp9UMtKAzEUDaJgrf6Aq4Dr0TwmmWRZ2vqAYkEqugtpmtip6WRMpkj_3tQR3bm4D7jnnHvvAeASo2uMUHWTMEaUF4jQHKSkBTkCA8wqUgjM6HHuqaBFyeXrKThLaYMQYkyUA7Ce7Bu9rQ18sinsorFw5H0wuqtDAxfWrJv6Y2cTdCHClzpab1OCj7b7DPEdTnSnYd3AqdepyxrzNmftf-ejtvV1r5XOwYnTPtmLnzoEz7fTxfi-mM3vHsajWWEoll2hHUWYmnLFNSdWEmwYWxnBhKCOu5JwRzRbVqQyfFkJY5cSSyqEkVoTZx2nQ3DV67YxHC7v1Cb_1eSViiIpJUMlJxlFepSJIaVonWpjvdVxrzBSB0dV76jKjqpvR9WBRHtSyuDmzcY_6X9YX3xmei8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3099950462</pqid></control><display><type>article</type><title>Dynamic Resource Allocation Techniques for Wireless Network Data in Elastic Optical Network Applications</title><source>SpringerNature Journals</source><creator>Ge, Jing ; Wu, Kangcheng ; Jamal, Nasir ; Ullah, Farhan</creator><creatorcontrib>Ge, Jing ; Wu, Kangcheng ; Jamal, Nasir ; Ullah, Farhan</creatorcontrib><description>Different devices and applications in wireless networks share spectrum resources reasonably. However, there are still issues such as channel overlap and adjacent interference in spectrum allocation and utilization, making the process of data dynamic resource allocation more complex. Therefore, a new data dynamic resource allocation technique for wireless networks is proposed. An elastic optical wireless network is formed by combining elastic optical network and wireless network. A global constrained resource allocation optimization model is designed based on the threshold of the maximum frequency gap number occupied on the fiber core at the end of allocation. Then, by using the global optimization genetic algorithm, the optimal dynamic resource allocation results of the elastic optical wireless network are obtained. Experimental results show that the spectrum utilization obtained by this technology is higher when the number of cores is 12, and the spectrum utilization is significantly improved by employing the proposed method.</description><identifier>ISSN: 1383-469X</identifier><identifier>EISSN: 1572-8153</identifier><identifier>DOI: 10.1007/s11036-023-02243-2</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Artificial intelligence ; Bandwidths ; Big Data ; Communications Engineering ; Computer centers ; Computer Communication Networks ; Data envelopment analysis ; Data transmission ; Efficiency ; Electrical Engineering ; Energy consumption ; Engineering ; Genetic algorithms ; Global optimization ; IT in Business ; Network management systems ; Networks ; Optical data processing ; Optical wireless ; Optimization ; Optimization models ; Resource allocation ; Spectrum allocation ; User behavior ; Utilization ; Wireless networks ; Workloads</subject><ispartof>Mobile networks and applications, 2023-10, Vol.28 (5), p.1712-1723</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-af3013c4d6a62e921c55dc85883f6f426f2a5b727c6b78ceb919388c9aa2fef63</citedby><cites>FETCH-LOGICAL-c319t-af3013c4d6a62e921c55dc85883f6f426f2a5b727c6b78ceb919388c9aa2fef63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11036-023-02243-2$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11036-023-02243-2$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Ge, Jing</creatorcontrib><creatorcontrib>Wu, Kangcheng</creatorcontrib><creatorcontrib>Jamal, Nasir</creatorcontrib><creatorcontrib>Ullah, Farhan</creatorcontrib><title>Dynamic Resource Allocation Techniques for Wireless Network Data in Elastic Optical Network Applications</title><title>Mobile networks and applications</title><addtitle>Mobile Netw Appl</addtitle><description>Different devices and applications in wireless networks share spectrum resources reasonably. However, there are still issues such as channel overlap and adjacent interference in spectrum allocation and utilization, making the process of data dynamic resource allocation more complex. Therefore, a new data dynamic resource allocation technique for wireless networks is proposed. An elastic optical wireless network is formed by combining elastic optical network and wireless network. A global constrained resource allocation optimization model is designed based on the threshold of the maximum frequency gap number occupied on the fiber core at the end of allocation. Then, by using the global optimization genetic algorithm, the optimal dynamic resource allocation results of the elastic optical wireless network are obtained. Experimental results show that the spectrum utilization obtained by this technology is higher when the number of cores is 12, and the spectrum utilization is significantly improved by employing the proposed method.</description><subject>Artificial intelligence</subject><subject>Bandwidths</subject><subject>Big Data</subject><subject>Communications Engineering</subject><subject>Computer centers</subject><subject>Computer Communication Networks</subject><subject>Data envelopment analysis</subject><subject>Data transmission</subject><subject>Efficiency</subject><subject>Electrical Engineering</subject><subject>Energy consumption</subject><subject>Engineering</subject><subject>Genetic algorithms</subject><subject>Global optimization</subject><subject>IT in Business</subject><subject>Network management systems</subject><subject>Networks</subject><subject>Optical data processing</subject><subject>Optical wireless</subject><subject>Optimization</subject><subject>Optimization models</subject><subject>Resource allocation</subject><subject>Spectrum allocation</subject><subject>User behavior</subject><subject>Utilization</subject><subject>Wireless networks</subject><subject>Workloads</subject><issn>1383-469X</issn><issn>1572-8153</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9UMtKAzEUDaJgrf6Aq4Dr0TwmmWRZ2vqAYkEqugtpmtip6WRMpkj_3tQR3bm4D7jnnHvvAeASo2uMUHWTMEaUF4jQHKSkBTkCA8wqUgjM6HHuqaBFyeXrKThLaYMQYkyUA7Ce7Bu9rQ18sinsorFw5H0wuqtDAxfWrJv6Y2cTdCHClzpab1OCj7b7DPEdTnSnYd3AqdepyxrzNmftf-ejtvV1r5XOwYnTPtmLnzoEz7fTxfi-mM3vHsajWWEoll2hHUWYmnLFNSdWEmwYWxnBhKCOu5JwRzRbVqQyfFkJY5cSSyqEkVoTZx2nQ3DV67YxHC7v1Cb_1eSViiIpJUMlJxlFepSJIaVonWpjvdVxrzBSB0dV76jKjqpvR9WBRHtSyuDmzcY_6X9YX3xmei8</recordid><startdate>20231001</startdate><enddate>20231001</enddate><creator>Ge, Jing</creator><creator>Wu, Kangcheng</creator><creator>Jamal, Nasir</creator><creator>Ullah, Farhan</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7SP</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>8AL</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>L.-</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M0N</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope></search><sort><creationdate>20231001</creationdate><title>Dynamic Resource Allocation Techniques for Wireless Network Data in Elastic Optical Network Applications</title><author>Ge, Jing ; Wu, Kangcheng ; Jamal, Nasir ; Ullah, Farhan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-af3013c4d6a62e921c55dc85883f6f426f2a5b727c6b78ceb919388c9aa2fef63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Artificial intelligence</topic><topic>Bandwidths</topic><topic>Big Data</topic><topic>Communications Engineering</topic><topic>Computer centers</topic><topic>Computer Communication Networks</topic><topic>Data envelopment analysis</topic><topic>Data transmission</topic><topic>Efficiency</topic><topic>Electrical Engineering</topic><topic>Energy consumption</topic><topic>Engineering</topic><topic>Genetic algorithms</topic><topic>Global optimization</topic><topic>IT in Business</topic><topic>Network management systems</topic><topic>Networks</topic><topic>Optical data processing</topic><topic>Optical wireless</topic><topic>Optimization</topic><topic>Optimization models</topic><topic>Resource allocation</topic><topic>Spectrum allocation</topic><topic>User behavior</topic><topic>Utilization</topic><topic>Wireless networks</topic><topic>Workloads</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ge, Jing</creatorcontrib><creatorcontrib>Wu, Kangcheng</creatorcontrib><creatorcontrib>Jamal, Nasir</creatorcontrib><creatorcontrib>Ullah, Farhan</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Access via ABI/INFORM (ProQuest)</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global</collection><collection>Computing Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><jtitle>Mobile networks and applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ge, Jing</au><au>Wu, Kangcheng</au><au>Jamal, Nasir</au><au>Ullah, Farhan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dynamic Resource Allocation Techniques for Wireless Network Data in Elastic Optical Network Applications</atitle><jtitle>Mobile networks and applications</jtitle><stitle>Mobile Netw Appl</stitle><date>2023-10-01</date><risdate>2023</risdate><volume>28</volume><issue>5</issue><spage>1712</spage><epage>1723</epage><pages>1712-1723</pages><issn>1383-469X</issn><eissn>1572-8153</eissn><abstract>Different devices and applications in wireless networks share spectrum resources reasonably. However, there are still issues such as channel overlap and adjacent interference in spectrum allocation and utilization, making the process of data dynamic resource allocation more complex. Therefore, a new data dynamic resource allocation technique for wireless networks is proposed. An elastic optical wireless network is formed by combining elastic optical network and wireless network. A global constrained resource allocation optimization model is designed based on the threshold of the maximum frequency gap number occupied on the fiber core at the end of allocation. Then, by using the global optimization genetic algorithm, the optimal dynamic resource allocation results of the elastic optical wireless network are obtained. Experimental results show that the spectrum utilization obtained by this technology is higher when the number of cores is 12, and the spectrum utilization is significantly improved by employing the proposed method.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11036-023-02243-2</doi><tpages>12</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1383-469X |
ispartof | Mobile networks and applications, 2023-10, Vol.28 (5), p.1712-1723 |
issn | 1383-469X 1572-8153 |
language | eng |
recordid | cdi_proquest_journals_3099950462 |
source | SpringerNature Journals |
subjects | Artificial intelligence Bandwidths Big Data Communications Engineering Computer centers Computer Communication Networks Data envelopment analysis Data transmission Efficiency Electrical Engineering Energy consumption Engineering Genetic algorithms Global optimization IT in Business Network management systems Networks Optical data processing Optical wireless Optimization Optimization models Resource allocation Spectrum allocation User behavior Utilization Wireless networks Workloads |
title | Dynamic Resource Allocation Techniques for Wireless Network Data in Elastic Optical Network Applications |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T04%3A30%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dynamic%20Resource%20Allocation%20Techniques%20for%20Wireless%20Network%20Data%20in%20Elastic%20Optical%20Network%20Applications&rft.jtitle=Mobile%20networks%20and%20applications&rft.au=Ge,%20Jing&rft.date=2023-10-01&rft.volume=28&rft.issue=5&rft.spage=1712&rft.epage=1723&rft.pages=1712-1723&rft.issn=1383-469X&rft.eissn=1572-8153&rft_id=info:doi/10.1007/s11036-023-02243-2&rft_dat=%3Cproquest_cross%3E3099950462%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3099950462&rft_id=info:pmid/&rfr_iscdi=true |