Dynamic Resource Allocation Techniques for Wireless Network Data in Elastic Optical Network Applications

Different devices and applications in wireless networks share spectrum resources reasonably. However, there are still issues such as channel overlap and adjacent interference in spectrum allocation and utilization, making the process of data dynamic resource allocation more complex. Therefore, a new...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mobile networks and applications 2023-10, Vol.28 (5), p.1712-1723
Hauptverfasser: Ge, Jing, Wu, Kangcheng, Jamal, Nasir, Ullah, Farhan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1723
container_issue 5
container_start_page 1712
container_title Mobile networks and applications
container_volume 28
creator Ge, Jing
Wu, Kangcheng
Jamal, Nasir
Ullah, Farhan
description Different devices and applications in wireless networks share spectrum resources reasonably. However, there are still issues such as channel overlap and adjacent interference in spectrum allocation and utilization, making the process of data dynamic resource allocation more complex. Therefore, a new data dynamic resource allocation technique for wireless networks is proposed. An elastic optical wireless network is formed by combining elastic optical network and wireless network. A global constrained resource allocation optimization model is designed based on the threshold of the maximum frequency gap number occupied on the fiber core at the end of allocation. Then, by using the global optimization genetic algorithm, the optimal dynamic resource allocation results of the elastic optical wireless network are obtained. Experimental results show that the spectrum utilization obtained by this technology is higher when the number of cores is 12, and the spectrum utilization is significantly improved by employing the proposed method.
doi_str_mv 10.1007/s11036-023-02243-2
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3099950462</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3099950462</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-af3013c4d6a62e921c55dc85883f6f426f2a5b727c6b78ceb919388c9aa2fef63</originalsourceid><addsrcrecordid>eNp9UMtKAzEUDaJgrf6Aq4Dr0TwmmWRZ2vqAYkEqugtpmtip6WRMpkj_3tQR3bm4D7jnnHvvAeASo2uMUHWTMEaUF4jQHKSkBTkCA8wqUgjM6HHuqaBFyeXrKThLaYMQYkyUA7Ce7Bu9rQ18sinsorFw5H0wuqtDAxfWrJv6Y2cTdCHClzpab1OCj7b7DPEdTnSnYd3AqdepyxrzNmftf-ejtvV1r5XOwYnTPtmLnzoEz7fTxfi-mM3vHsajWWEoll2hHUWYmnLFNSdWEmwYWxnBhKCOu5JwRzRbVqQyfFkJY5cSSyqEkVoTZx2nQ3DV67YxHC7v1Cb_1eSViiIpJUMlJxlFepSJIaVonWpjvdVxrzBSB0dV76jKjqpvR9WBRHtSyuDmzcY_6X9YX3xmei8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3099950462</pqid></control><display><type>article</type><title>Dynamic Resource Allocation Techniques for Wireless Network Data in Elastic Optical Network Applications</title><source>SpringerNature Journals</source><creator>Ge, Jing ; Wu, Kangcheng ; Jamal, Nasir ; Ullah, Farhan</creator><creatorcontrib>Ge, Jing ; Wu, Kangcheng ; Jamal, Nasir ; Ullah, Farhan</creatorcontrib><description>Different devices and applications in wireless networks share spectrum resources reasonably. However, there are still issues such as channel overlap and adjacent interference in spectrum allocation and utilization, making the process of data dynamic resource allocation more complex. Therefore, a new data dynamic resource allocation technique for wireless networks is proposed. An elastic optical wireless network is formed by combining elastic optical network and wireless network. A global constrained resource allocation optimization model is designed based on the threshold of the maximum frequency gap number occupied on the fiber core at the end of allocation. Then, by using the global optimization genetic algorithm, the optimal dynamic resource allocation results of the elastic optical wireless network are obtained. Experimental results show that the spectrum utilization obtained by this technology is higher when the number of cores is 12, and the spectrum utilization is significantly improved by employing the proposed method.</description><identifier>ISSN: 1383-469X</identifier><identifier>EISSN: 1572-8153</identifier><identifier>DOI: 10.1007/s11036-023-02243-2</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Artificial intelligence ; Bandwidths ; Big Data ; Communications Engineering ; Computer centers ; Computer Communication Networks ; Data envelopment analysis ; Data transmission ; Efficiency ; Electrical Engineering ; Energy consumption ; Engineering ; Genetic algorithms ; Global optimization ; IT in Business ; Network management systems ; Networks ; Optical data processing ; Optical wireless ; Optimization ; Optimization models ; Resource allocation ; Spectrum allocation ; User behavior ; Utilization ; Wireless networks ; Workloads</subject><ispartof>Mobile networks and applications, 2023-10, Vol.28 (5), p.1712-1723</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-af3013c4d6a62e921c55dc85883f6f426f2a5b727c6b78ceb919388c9aa2fef63</citedby><cites>FETCH-LOGICAL-c319t-af3013c4d6a62e921c55dc85883f6f426f2a5b727c6b78ceb919388c9aa2fef63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11036-023-02243-2$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11036-023-02243-2$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Ge, Jing</creatorcontrib><creatorcontrib>Wu, Kangcheng</creatorcontrib><creatorcontrib>Jamal, Nasir</creatorcontrib><creatorcontrib>Ullah, Farhan</creatorcontrib><title>Dynamic Resource Allocation Techniques for Wireless Network Data in Elastic Optical Network Applications</title><title>Mobile networks and applications</title><addtitle>Mobile Netw Appl</addtitle><description>Different devices and applications in wireless networks share spectrum resources reasonably. However, there are still issues such as channel overlap and adjacent interference in spectrum allocation and utilization, making the process of data dynamic resource allocation more complex. Therefore, a new data dynamic resource allocation technique for wireless networks is proposed. An elastic optical wireless network is formed by combining elastic optical network and wireless network. A global constrained resource allocation optimization model is designed based on the threshold of the maximum frequency gap number occupied on the fiber core at the end of allocation. Then, by using the global optimization genetic algorithm, the optimal dynamic resource allocation results of the elastic optical wireless network are obtained. Experimental results show that the spectrum utilization obtained by this technology is higher when the number of cores is 12, and the spectrum utilization is significantly improved by employing the proposed method.</description><subject>Artificial intelligence</subject><subject>Bandwidths</subject><subject>Big Data</subject><subject>Communications Engineering</subject><subject>Computer centers</subject><subject>Computer Communication Networks</subject><subject>Data envelopment analysis</subject><subject>Data transmission</subject><subject>Efficiency</subject><subject>Electrical Engineering</subject><subject>Energy consumption</subject><subject>Engineering</subject><subject>Genetic algorithms</subject><subject>Global optimization</subject><subject>IT in Business</subject><subject>Network management systems</subject><subject>Networks</subject><subject>Optical data processing</subject><subject>Optical wireless</subject><subject>Optimization</subject><subject>Optimization models</subject><subject>Resource allocation</subject><subject>Spectrum allocation</subject><subject>User behavior</subject><subject>Utilization</subject><subject>Wireless networks</subject><subject>Workloads</subject><issn>1383-469X</issn><issn>1572-8153</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9UMtKAzEUDaJgrf6Aq4Dr0TwmmWRZ2vqAYkEqugtpmtip6WRMpkj_3tQR3bm4D7jnnHvvAeASo2uMUHWTMEaUF4jQHKSkBTkCA8wqUgjM6HHuqaBFyeXrKThLaYMQYkyUA7Ce7Bu9rQ18sinsorFw5H0wuqtDAxfWrJv6Y2cTdCHClzpab1OCj7b7DPEdTnSnYd3AqdepyxrzNmftf-ejtvV1r5XOwYnTPtmLnzoEz7fTxfi-mM3vHsajWWEoll2hHUWYmnLFNSdWEmwYWxnBhKCOu5JwRzRbVqQyfFkJY5cSSyqEkVoTZx2nQ3DV67YxHC7v1Cb_1eSViiIpJUMlJxlFepSJIaVonWpjvdVxrzBSB0dV76jKjqpvR9WBRHtSyuDmzcY_6X9YX3xmei8</recordid><startdate>20231001</startdate><enddate>20231001</enddate><creator>Ge, Jing</creator><creator>Wu, Kangcheng</creator><creator>Jamal, Nasir</creator><creator>Ullah, Farhan</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7SP</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>8AL</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>L.-</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M0N</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope></search><sort><creationdate>20231001</creationdate><title>Dynamic Resource Allocation Techniques for Wireless Network Data in Elastic Optical Network Applications</title><author>Ge, Jing ; Wu, Kangcheng ; Jamal, Nasir ; Ullah, Farhan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-af3013c4d6a62e921c55dc85883f6f426f2a5b727c6b78ceb919388c9aa2fef63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Artificial intelligence</topic><topic>Bandwidths</topic><topic>Big Data</topic><topic>Communications Engineering</topic><topic>Computer centers</topic><topic>Computer Communication Networks</topic><topic>Data envelopment analysis</topic><topic>Data transmission</topic><topic>Efficiency</topic><topic>Electrical Engineering</topic><topic>Energy consumption</topic><topic>Engineering</topic><topic>Genetic algorithms</topic><topic>Global optimization</topic><topic>IT in Business</topic><topic>Network management systems</topic><topic>Networks</topic><topic>Optical data processing</topic><topic>Optical wireless</topic><topic>Optimization</topic><topic>Optimization models</topic><topic>Resource allocation</topic><topic>Spectrum allocation</topic><topic>User behavior</topic><topic>Utilization</topic><topic>Wireless networks</topic><topic>Workloads</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ge, Jing</creatorcontrib><creatorcontrib>Wu, Kangcheng</creatorcontrib><creatorcontrib>Jamal, Nasir</creatorcontrib><creatorcontrib>Ullah, Farhan</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Access via ABI/INFORM (ProQuest)</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global</collection><collection>Computing Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><jtitle>Mobile networks and applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ge, Jing</au><au>Wu, Kangcheng</au><au>Jamal, Nasir</au><au>Ullah, Farhan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dynamic Resource Allocation Techniques for Wireless Network Data in Elastic Optical Network Applications</atitle><jtitle>Mobile networks and applications</jtitle><stitle>Mobile Netw Appl</stitle><date>2023-10-01</date><risdate>2023</risdate><volume>28</volume><issue>5</issue><spage>1712</spage><epage>1723</epage><pages>1712-1723</pages><issn>1383-469X</issn><eissn>1572-8153</eissn><abstract>Different devices and applications in wireless networks share spectrum resources reasonably. However, there are still issues such as channel overlap and adjacent interference in spectrum allocation and utilization, making the process of data dynamic resource allocation more complex. Therefore, a new data dynamic resource allocation technique for wireless networks is proposed. An elastic optical wireless network is formed by combining elastic optical network and wireless network. A global constrained resource allocation optimization model is designed based on the threshold of the maximum frequency gap number occupied on the fiber core at the end of allocation. Then, by using the global optimization genetic algorithm, the optimal dynamic resource allocation results of the elastic optical wireless network are obtained. Experimental results show that the spectrum utilization obtained by this technology is higher when the number of cores is 12, and the spectrum utilization is significantly improved by employing the proposed method.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11036-023-02243-2</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1383-469X
ispartof Mobile networks and applications, 2023-10, Vol.28 (5), p.1712-1723
issn 1383-469X
1572-8153
language eng
recordid cdi_proquest_journals_3099950462
source SpringerNature Journals
subjects Artificial intelligence
Bandwidths
Big Data
Communications Engineering
Computer centers
Computer Communication Networks
Data envelopment analysis
Data transmission
Efficiency
Electrical Engineering
Energy consumption
Engineering
Genetic algorithms
Global optimization
IT in Business
Network management systems
Networks
Optical data processing
Optical wireless
Optimization
Optimization models
Resource allocation
Spectrum allocation
User behavior
Utilization
Wireless networks
Workloads
title Dynamic Resource Allocation Techniques for Wireless Network Data in Elastic Optical Network Applications
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T04%3A30%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dynamic%20Resource%20Allocation%20Techniques%20for%20Wireless%20Network%20Data%20in%20Elastic%20Optical%20Network%20Applications&rft.jtitle=Mobile%20networks%20and%20applications&rft.au=Ge,%20Jing&rft.date=2023-10-01&rft.volume=28&rft.issue=5&rft.spage=1712&rft.epage=1723&rft.pages=1712-1723&rft.issn=1383-469X&rft.eissn=1572-8153&rft_id=info:doi/10.1007/s11036-023-02243-2&rft_dat=%3Cproquest_cross%3E3099950462%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3099950462&rft_id=info:pmid/&rfr_iscdi=true