ZnO-Saponite Nanocomposite: Input of Adsorption and Photocatalysis for Removal of Rhodamine B Dye
The sol–gel process was applied to prepare ZnO-saponite nanocomposite for environmental remediation and investigation of photocatalysis mechanisms. The nanocomposite followed the photodegradation of Rhodamine B (RhB) as a model dye under irradiation with visible light. The materials were characteriz...
Gespeichert in:
Veröffentlicht in: | Water, air, and soil pollution air, and soil pollution, 2024-10, Vol.235 (10), p.656-656, Article 656 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 656 |
---|---|
container_issue | 10 |
container_start_page | 656 |
container_title | Water, air, and soil pollution |
container_volume | 235 |
creator | Damaceno, Dihêgo H. Trigueiro, Pollyana Lima, Luciano Clécio Brandão Honorio, Luzia M. Peña-Garcia, Ramón Furtini, Marcelo B. Guerra, Yuset Fonseca, Maria Gardennia da Silva-Filho, Edson C. Jaber, Maguy Osajima, Josy A. |
description | The sol–gel process was applied to prepare ZnO-saponite nanocomposite for environmental remediation and investigation of photocatalysis mechanisms. The nanocomposite followed the photodegradation of Rhodamine B (RhB) as a model dye under irradiation with visible light. The materials were characterized by X-ray diffraction, scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), diffuse reflectance spectroscopy, photoluminescence, Point of zero charges (Pcz), and Brunauer–Emmett–Teller (BET). Reuse, the effect of scavengers, and toxicity were also investigated. The results showed an effective incorporation of the semiconductor on the surface of the support, forming a hexagonal structure with the wurtzite phase of ZnO. The evaluation of texture and morphology showed the effective distribution of ZnO nanoparticles on the surface of the synthesized photocatalyst. The intensified adsorption/photocatalysis process using saponite-based nanocomposite achieved more than 85% RhB dye removal efficiency after 270 min. It followed presented pseudo-first-order kinetics with a constant equal to 6.627 × 10
–1
min
−1
. Furthermore, the evaluation of the effect of scavengers indicated that alcohol played an important role in scavenging hydroxyl radicals. It was stable after evaluating the catalyst after successive cycles, maintaining its structure, as FTIR proved. Furthermore, the studied nanocomposites did not show evidence of toxicity, thus being promising candidates for application in the removal of polluting dye. |
doi_str_mv | 10.1007/s11270-024-07456-z |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3099946724</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3153782695</sourcerecordid><originalsourceid>FETCH-LOGICAL-c233t-7765d551d69f3f565ee17428f9ed41bdef3789c127e24406647d3764eb0fc4de3</originalsourceid><addsrcrecordid>eNp9kE1LHTEUhkNR6PXjD3QV6KabaL5z4876UQVR0XbTTYiTkzoyk4zJ3ML11zf2CgUXzeYQeN6Xcx6EPjF6wCg1h5UxbiihXBJqpNLk5QNaMGUE4VbwLbSgVFqirbEf0U6tT7Q9uzQL5H-mG3Lvp5z6GfC1T7nL45Rr-x3hyzStZpwjPg41l2nuc8I-BXz7mOfc-dkP69pXHHPBdzDm3354he8ec_BjnwB_xadr2EPb0Q8V9t_mLvpxfvb95IJc3Xy7PDm-Ih0XYibGaBWUYkHbKKLSCoAZyZfRQpDsIUAUZmm7diZwKanW0gRhtIQHGjsZQOyiL5veqeTnFdTZjX3tYBh8gryqTjDVGri2qqGf36FPeVVS284Jaq2V2nDZKL6hupJrLRDdVPrRl7Vj1L1adxvrrll3f627lxYSm1BtcPoF5V_1f1J_AKwVhQw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3099946724</pqid></control><display><type>article</type><title>ZnO-Saponite Nanocomposite: Input of Adsorption and Photocatalysis for Removal of Rhodamine B Dye</title><source>Springer Nature - Complete Springer Journals</source><creator>Damaceno, Dihêgo H. ; Trigueiro, Pollyana ; Lima, Luciano Clécio Brandão ; Honorio, Luzia M. ; Peña-Garcia, Ramón ; Furtini, Marcelo B. ; Guerra, Yuset ; Fonseca, Maria Gardennia ; da Silva-Filho, Edson C. ; Jaber, Maguy ; Osajima, Josy A.</creator><creatorcontrib>Damaceno, Dihêgo H. ; Trigueiro, Pollyana ; Lima, Luciano Clécio Brandão ; Honorio, Luzia M. ; Peña-Garcia, Ramón ; Furtini, Marcelo B. ; Guerra, Yuset ; Fonseca, Maria Gardennia ; da Silva-Filho, Edson C. ; Jaber, Maguy ; Osajima, Josy A.</creatorcontrib><description>The sol–gel process was applied to prepare ZnO-saponite nanocomposite for environmental remediation and investigation of photocatalysis mechanisms. The nanocomposite followed the photodegradation of Rhodamine B (RhB) as a model dye under irradiation with visible light. The materials were characterized by X-ray diffraction, scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), diffuse reflectance spectroscopy, photoluminescence, Point of zero charges (Pcz), and Brunauer–Emmett–Teller (BET). Reuse, the effect of scavengers, and toxicity were also investigated. The results showed an effective incorporation of the semiconductor on the surface of the support, forming a hexagonal structure with the wurtzite phase of ZnO. The evaluation of texture and morphology showed the effective distribution of ZnO nanoparticles on the surface of the synthesized photocatalyst. The intensified adsorption/photocatalysis process using saponite-based nanocomposite achieved more than 85% RhB dye removal efficiency after 270 min. It followed presented pseudo-first-order kinetics with a constant equal to 6.627 × 10
–1
min
−1
. Furthermore, the evaluation of the effect of scavengers indicated that alcohol played an important role in scavenging hydroxyl radicals. It was stable after evaluating the catalyst after successive cycles, maintaining its structure, as FTIR proved. Furthermore, the studied nanocomposites did not show evidence of toxicity, thus being promising candidates for application in the removal of polluting dye.</description><identifier>ISSN: 0049-6979</identifier><identifier>EISSN: 1573-2932</identifier><identifier>DOI: 10.1007/s11270-024-07456-z</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Adsorption ; air ; Alcohols ; Atmospheric Protection/Air Quality Control/Air Pollution ; Catalysts ; Climate Change/Climate Change Impacts ; Color removal ; Diffuse reflectance spectroscopy ; Dyes ; Earth and Environmental Science ; Electron microscopy ; Environment ; Environmental cleanup ; Fourier transform infrared spectroscopy ; Fourier transforms ; Free radicals ; Gels ; Hydrogeology ; Hydroxyl radicals ; Infrared spectroscopy ; Irradiation ; Kinetics ; Light diffraction ; Nanocomposites ; Nanoparticles ; Photocatalysis ; photocatalysts ; Photodegradation ; Photoluminescence ; photolysis ; Photons ; Pollutant removal ; Reflectance ; reflectance spectroscopy ; remediation ; Rhodamine ; rhodamines ; Saponite ; Scanning electron microscopy ; Scavengers ; Scavenging ; semiconductors ; soil ; Soil Science & Conservation ; Sol-gel processes ; sol-gel processing ; Spectrum analysis ; Surface layers ; texture ; Toxicity ; water ; Water Quality/Water Pollution ; Wurtzite ; X-ray diffraction ; Zinc oxide</subject><ispartof>Water, air, and soil pollution, 2024-10, Vol.235 (10), p.656-656, Article 656</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Switzerland AG 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c233t-7765d551d69f3f565ee17428f9ed41bdef3789c127e24406647d3764eb0fc4de3</cites><orcidid>0000-0001-7089-3244</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11270-024-07456-z$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11270-024-07456-z$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,778,782,27911,27912,41475,42544,51306</link.rule.ids></links><search><creatorcontrib>Damaceno, Dihêgo H.</creatorcontrib><creatorcontrib>Trigueiro, Pollyana</creatorcontrib><creatorcontrib>Lima, Luciano Clécio Brandão</creatorcontrib><creatorcontrib>Honorio, Luzia M.</creatorcontrib><creatorcontrib>Peña-Garcia, Ramón</creatorcontrib><creatorcontrib>Furtini, Marcelo B.</creatorcontrib><creatorcontrib>Guerra, Yuset</creatorcontrib><creatorcontrib>Fonseca, Maria Gardennia</creatorcontrib><creatorcontrib>da Silva-Filho, Edson C.</creatorcontrib><creatorcontrib>Jaber, Maguy</creatorcontrib><creatorcontrib>Osajima, Josy A.</creatorcontrib><title>ZnO-Saponite Nanocomposite: Input of Adsorption and Photocatalysis for Removal of Rhodamine B Dye</title><title>Water, air, and soil pollution</title><addtitle>Water Air Soil Pollut</addtitle><description>The sol–gel process was applied to prepare ZnO-saponite nanocomposite for environmental remediation and investigation of photocatalysis mechanisms. The nanocomposite followed the photodegradation of Rhodamine B (RhB) as a model dye under irradiation with visible light. The materials were characterized by X-ray diffraction, scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), diffuse reflectance spectroscopy, photoluminescence, Point of zero charges (Pcz), and Brunauer–Emmett–Teller (BET). Reuse, the effect of scavengers, and toxicity were also investigated. The results showed an effective incorporation of the semiconductor on the surface of the support, forming a hexagonal structure with the wurtzite phase of ZnO. The evaluation of texture and morphology showed the effective distribution of ZnO nanoparticles on the surface of the synthesized photocatalyst. The intensified adsorption/photocatalysis process using saponite-based nanocomposite achieved more than 85% RhB dye removal efficiency after 270 min. It followed presented pseudo-first-order kinetics with a constant equal to 6.627 × 10
–1
min
−1
. Furthermore, the evaluation of the effect of scavengers indicated that alcohol played an important role in scavenging hydroxyl radicals. It was stable after evaluating the catalyst after successive cycles, maintaining its structure, as FTIR proved. Furthermore, the studied nanocomposites did not show evidence of toxicity, thus being promising candidates for application in the removal of polluting dye.</description><subject>Adsorption</subject><subject>air</subject><subject>Alcohols</subject><subject>Atmospheric Protection/Air Quality Control/Air Pollution</subject><subject>Catalysts</subject><subject>Climate Change/Climate Change Impacts</subject><subject>Color removal</subject><subject>Diffuse reflectance spectroscopy</subject><subject>Dyes</subject><subject>Earth and Environmental Science</subject><subject>Electron microscopy</subject><subject>Environment</subject><subject>Environmental cleanup</subject><subject>Fourier transform infrared spectroscopy</subject><subject>Fourier transforms</subject><subject>Free radicals</subject><subject>Gels</subject><subject>Hydrogeology</subject><subject>Hydroxyl radicals</subject><subject>Infrared spectroscopy</subject><subject>Irradiation</subject><subject>Kinetics</subject><subject>Light diffraction</subject><subject>Nanocomposites</subject><subject>Nanoparticles</subject><subject>Photocatalysis</subject><subject>photocatalysts</subject><subject>Photodegradation</subject><subject>Photoluminescence</subject><subject>photolysis</subject><subject>Photons</subject><subject>Pollutant removal</subject><subject>Reflectance</subject><subject>reflectance spectroscopy</subject><subject>remediation</subject><subject>Rhodamine</subject><subject>rhodamines</subject><subject>Saponite</subject><subject>Scanning electron microscopy</subject><subject>Scavengers</subject><subject>Scavenging</subject><subject>semiconductors</subject><subject>soil</subject><subject>Soil Science & Conservation</subject><subject>Sol-gel processes</subject><subject>sol-gel processing</subject><subject>Spectrum analysis</subject><subject>Surface layers</subject><subject>texture</subject><subject>Toxicity</subject><subject>water</subject><subject>Water Quality/Water Pollution</subject><subject>Wurtzite</subject><subject>X-ray diffraction</subject><subject>Zinc oxide</subject><issn>0049-6979</issn><issn>1573-2932</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LHTEUhkNR6PXjD3QV6KabaL5z4876UQVR0XbTTYiTkzoyk4zJ3ML11zf2CgUXzeYQeN6Xcx6EPjF6wCg1h5UxbiihXBJqpNLk5QNaMGUE4VbwLbSgVFqirbEf0U6tT7Q9uzQL5H-mG3Lvp5z6GfC1T7nL45Rr-x3hyzStZpwjPg41l2nuc8I-BXz7mOfc-dkP69pXHHPBdzDm3354he8ec_BjnwB_xadr2EPb0Q8V9t_mLvpxfvb95IJc3Xy7PDm-Ih0XYibGaBWUYkHbKKLSCoAZyZfRQpDsIUAUZmm7diZwKanW0gRhtIQHGjsZQOyiL5veqeTnFdTZjX3tYBh8gryqTjDVGri2qqGf36FPeVVS284Jaq2V2nDZKL6hupJrLRDdVPrRl7Vj1L1adxvrrll3f627lxYSm1BtcPoF5V_1f1J_AKwVhQw</recordid><startdate>20241001</startdate><enddate>20241001</enddate><creator>Damaceno, Dihêgo H.</creator><creator>Trigueiro, Pollyana</creator><creator>Lima, Luciano Clécio Brandão</creator><creator>Honorio, Luzia M.</creator><creator>Peña-Garcia, Ramón</creator><creator>Furtini, Marcelo B.</creator><creator>Guerra, Yuset</creator><creator>Fonseca, Maria Gardennia</creator><creator>da Silva-Filho, Edson C.</creator><creator>Jaber, Maguy</creator><creator>Osajima, Josy A.</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QH</scope><scope>7T7</scope><scope>7TV</scope><scope>7U7</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H96</scope><scope>H97</scope><scope>K9.</scope><scope>L.G</scope><scope>P64</scope><scope>7S9</scope><scope>L.6</scope><orcidid>https://orcid.org/0000-0001-7089-3244</orcidid></search><sort><creationdate>20241001</creationdate><title>ZnO-Saponite Nanocomposite: Input of Adsorption and Photocatalysis for Removal of Rhodamine B Dye</title><author>Damaceno, Dihêgo H. ; Trigueiro, Pollyana ; Lima, Luciano Clécio Brandão ; Honorio, Luzia M. ; Peña-Garcia, Ramón ; Furtini, Marcelo B. ; Guerra, Yuset ; Fonseca, Maria Gardennia ; da Silva-Filho, Edson C. ; Jaber, Maguy ; Osajima, Josy A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c233t-7765d551d69f3f565ee17428f9ed41bdef3789c127e24406647d3764eb0fc4de3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Adsorption</topic><topic>air</topic><topic>Alcohols</topic><topic>Atmospheric Protection/Air Quality Control/Air Pollution</topic><topic>Catalysts</topic><topic>Climate Change/Climate Change Impacts</topic><topic>Color removal</topic><topic>Diffuse reflectance spectroscopy</topic><topic>Dyes</topic><topic>Earth and Environmental Science</topic><topic>Electron microscopy</topic><topic>Environment</topic><topic>Environmental cleanup</topic><topic>Fourier transform infrared spectroscopy</topic><topic>Fourier transforms</topic><topic>Free radicals</topic><topic>Gels</topic><topic>Hydrogeology</topic><topic>Hydroxyl radicals</topic><topic>Infrared spectroscopy</topic><topic>Irradiation</topic><topic>Kinetics</topic><topic>Light diffraction</topic><topic>Nanocomposites</topic><topic>Nanoparticles</topic><topic>Photocatalysis</topic><topic>photocatalysts</topic><topic>Photodegradation</topic><topic>Photoluminescence</topic><topic>photolysis</topic><topic>Photons</topic><topic>Pollutant removal</topic><topic>Reflectance</topic><topic>reflectance spectroscopy</topic><topic>remediation</topic><topic>Rhodamine</topic><topic>rhodamines</topic><topic>Saponite</topic><topic>Scanning electron microscopy</topic><topic>Scavengers</topic><topic>Scavenging</topic><topic>semiconductors</topic><topic>soil</topic><topic>Soil Science & Conservation</topic><topic>Sol-gel processes</topic><topic>sol-gel processing</topic><topic>Spectrum analysis</topic><topic>Surface layers</topic><topic>texture</topic><topic>Toxicity</topic><topic>water</topic><topic>Water Quality/Water Pollution</topic><topic>Wurtzite</topic><topic>X-ray diffraction</topic><topic>Zinc oxide</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Damaceno, Dihêgo H.</creatorcontrib><creatorcontrib>Trigueiro, Pollyana</creatorcontrib><creatorcontrib>Lima, Luciano Clécio Brandão</creatorcontrib><creatorcontrib>Honorio, Luzia M.</creatorcontrib><creatorcontrib>Peña-Garcia, Ramón</creatorcontrib><creatorcontrib>Furtini, Marcelo B.</creatorcontrib><creatorcontrib>Guerra, Yuset</creatorcontrib><creatorcontrib>Fonseca, Maria Gardennia</creatorcontrib><creatorcontrib>da Silva-Filho, Edson C.</creatorcontrib><creatorcontrib>Jaber, Maguy</creatorcontrib><creatorcontrib>Osajima, Josy A.</creatorcontrib><collection>CrossRef</collection><collection>Aqualine</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Pollution Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><jtitle>Water, air, and soil pollution</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Damaceno, Dihêgo H.</au><au>Trigueiro, Pollyana</au><au>Lima, Luciano Clécio Brandão</au><au>Honorio, Luzia M.</au><au>Peña-Garcia, Ramón</au><au>Furtini, Marcelo B.</au><au>Guerra, Yuset</au><au>Fonseca, Maria Gardennia</au><au>da Silva-Filho, Edson C.</au><au>Jaber, Maguy</au><au>Osajima, Josy A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>ZnO-Saponite Nanocomposite: Input of Adsorption and Photocatalysis for Removal of Rhodamine B Dye</atitle><jtitle>Water, air, and soil pollution</jtitle><stitle>Water Air Soil Pollut</stitle><date>2024-10-01</date><risdate>2024</risdate><volume>235</volume><issue>10</issue><spage>656</spage><epage>656</epage><pages>656-656</pages><artnum>656</artnum><issn>0049-6979</issn><eissn>1573-2932</eissn><abstract>The sol–gel process was applied to prepare ZnO-saponite nanocomposite for environmental remediation and investigation of photocatalysis mechanisms. The nanocomposite followed the photodegradation of Rhodamine B (RhB) as a model dye under irradiation with visible light. The materials were characterized by X-ray diffraction, scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), diffuse reflectance spectroscopy, photoluminescence, Point of zero charges (Pcz), and Brunauer–Emmett–Teller (BET). Reuse, the effect of scavengers, and toxicity were also investigated. The results showed an effective incorporation of the semiconductor on the surface of the support, forming a hexagonal structure with the wurtzite phase of ZnO. The evaluation of texture and morphology showed the effective distribution of ZnO nanoparticles on the surface of the synthesized photocatalyst. The intensified adsorption/photocatalysis process using saponite-based nanocomposite achieved more than 85% RhB dye removal efficiency after 270 min. It followed presented pseudo-first-order kinetics with a constant equal to 6.627 × 10
–1
min
−1
. Furthermore, the evaluation of the effect of scavengers indicated that alcohol played an important role in scavenging hydroxyl radicals. It was stable after evaluating the catalyst after successive cycles, maintaining its structure, as FTIR proved. Furthermore, the studied nanocomposites did not show evidence of toxicity, thus being promising candidates for application in the removal of polluting dye.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s11270-024-07456-z</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0001-7089-3244</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0049-6979 |
ispartof | Water, air, and soil pollution, 2024-10, Vol.235 (10), p.656-656, Article 656 |
issn | 0049-6979 1573-2932 |
language | eng |
recordid | cdi_proquest_journals_3099946724 |
source | Springer Nature - Complete Springer Journals |
subjects | Adsorption air Alcohols Atmospheric Protection/Air Quality Control/Air Pollution Catalysts Climate Change/Climate Change Impacts Color removal Diffuse reflectance spectroscopy Dyes Earth and Environmental Science Electron microscopy Environment Environmental cleanup Fourier transform infrared spectroscopy Fourier transforms Free radicals Gels Hydrogeology Hydroxyl radicals Infrared spectroscopy Irradiation Kinetics Light diffraction Nanocomposites Nanoparticles Photocatalysis photocatalysts Photodegradation Photoluminescence photolysis Photons Pollutant removal Reflectance reflectance spectroscopy remediation Rhodamine rhodamines Saponite Scanning electron microscopy Scavengers Scavenging semiconductors soil Soil Science & Conservation Sol-gel processes sol-gel processing Spectrum analysis Surface layers texture Toxicity water Water Quality/Water Pollution Wurtzite X-ray diffraction Zinc oxide |
title | ZnO-Saponite Nanocomposite: Input of Adsorption and Photocatalysis for Removal of Rhodamine B Dye |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T20%3A19%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=ZnO-Saponite%20Nanocomposite:%20Input%20of%20Adsorption%20and%20Photocatalysis%20for%20Removal%20of%20Rhodamine%20B%20Dye&rft.jtitle=Water,%20air,%20and%20soil%20pollution&rft.au=Damaceno,%20Dih%C3%AAgo%20H.&rft.date=2024-10-01&rft.volume=235&rft.issue=10&rft.spage=656&rft.epage=656&rft.pages=656-656&rft.artnum=656&rft.issn=0049-6979&rft.eissn=1573-2932&rft_id=info:doi/10.1007/s11270-024-07456-z&rft_dat=%3Cproquest_cross%3E3153782695%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3099946724&rft_id=info:pmid/&rfr_iscdi=true |