CinePreGen: Camera Controllable Video Previsualization via Engine-powered Diffusion

With advancements in video generative AI models (e.g., SORA), creators are increasingly using these techniques to enhance video previsualization. However, they face challenges with incomplete and mismatched AI workflows. Existing methods mainly rely on text descriptions and struggle with camera plac...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2024-08
Hauptverfasser: Chen, Yiran, Rao, Anyi, Jiang, Xuekun, Xiao, Shishi, Ma, Ruiqing, Wang, Zeyu, Xiong, Hui, Dai, Bo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Chen, Yiran
Rao, Anyi
Jiang, Xuekun
Xiao, Shishi
Ma, Ruiqing
Wang, Zeyu
Xiong, Hui
Dai, Bo
description With advancements in video generative AI models (e.g., SORA), creators are increasingly using these techniques to enhance video previsualization. However, they face challenges with incomplete and mismatched AI workflows. Existing methods mainly rely on text descriptions and struggle with camera placement, a key component of previsualization. To address these issues, we introduce CinePreGen, a visual previsualization system enhanced with engine-powered diffusion. It features a novel camera and storyboard interface that offers dynamic control, from global to local camera adjustments. This is combined with a user-friendly AI rendering workflow, which aims to achieve consistent results through multi-masked IP-Adapter and engine simulation guidelines. In our comprehensive evaluation study, we demonstrate that our system reduces development viscosity (i.e., the complexity and challenges in the development process), meets users' needs for extensive control and iteration in the design process, and outperforms other AI video production workflows in cinematic camera movement, as shown by our experiments and a within-subjects user study. With its intuitive camera controls and realistic rendering of camera motion, CinePreGen shows great potential for improving video production for both individual creators and industry professionals.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_3099943873</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3099943873</sourcerecordid><originalsourceid>FETCH-proquest_journals_30999438733</originalsourceid><addsrcrecordid>eNqNi0ELwiAYQCUIGrX_IHQemG5t62qrjkHRdRj7DIfp0rmgX5-HfkCnd3jvzVBCGdtkVU7pAqXe94QQui1pUbAEXbgycHZwBLPDXDzBCcytGZ3VWtw14JvqwOJYTMoHodVHjMoaPCmBG_OIczbYNzjo8F5JGXyUKzSXQntIf1yi9aG58lM2OPsK4Me2t8GZqFpG6rrOWVUy9l_1BTomQFo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3099943873</pqid></control><display><type>article</type><title>CinePreGen: Camera Controllable Video Previsualization via Engine-powered Diffusion</title><source>Free E- Journals</source><creator>Chen, Yiran ; Rao, Anyi ; Jiang, Xuekun ; Xiao, Shishi ; Ma, Ruiqing ; Wang, Zeyu ; Xiong, Hui ; Dai, Bo</creator><creatorcontrib>Chen, Yiran ; Rao, Anyi ; Jiang, Xuekun ; Xiao, Shishi ; Ma, Ruiqing ; Wang, Zeyu ; Xiong, Hui ; Dai, Bo</creatorcontrib><description>With advancements in video generative AI models (e.g., SORA), creators are increasingly using these techniques to enhance video previsualization. However, they face challenges with incomplete and mismatched AI workflows. Existing methods mainly rely on text descriptions and struggle with camera placement, a key component of previsualization. To address these issues, we introduce CinePreGen, a visual previsualization system enhanced with engine-powered diffusion. It features a novel camera and storyboard interface that offers dynamic control, from global to local camera adjustments. This is combined with a user-friendly AI rendering workflow, which aims to achieve consistent results through multi-masked IP-Adapter and engine simulation guidelines. In our comprehensive evaluation study, we demonstrate that our system reduces development viscosity (i.e., the complexity and challenges in the development process), meets users' needs for extensive control and iteration in the design process, and outperforms other AI video production workflows in cinematic camera movement, as shown by our experiments and a within-subjects user study. With its intuitive camera controls and realistic rendering of camera motion, CinePreGen shows great potential for improving video production for both individual creators and industry professionals.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Cameras ; Control systems ; Controllability ; Dynamic control ; Generative artificial intelligence ; Movement ; Rendering ; Video production ; Workflow</subject><ispartof>arXiv.org, 2024-08</ispartof><rights>2024. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>777,781</link.rule.ids></links><search><creatorcontrib>Chen, Yiran</creatorcontrib><creatorcontrib>Rao, Anyi</creatorcontrib><creatorcontrib>Jiang, Xuekun</creatorcontrib><creatorcontrib>Xiao, Shishi</creatorcontrib><creatorcontrib>Ma, Ruiqing</creatorcontrib><creatorcontrib>Wang, Zeyu</creatorcontrib><creatorcontrib>Xiong, Hui</creatorcontrib><creatorcontrib>Dai, Bo</creatorcontrib><title>CinePreGen: Camera Controllable Video Previsualization via Engine-powered Diffusion</title><title>arXiv.org</title><description>With advancements in video generative AI models (e.g., SORA), creators are increasingly using these techniques to enhance video previsualization. However, they face challenges with incomplete and mismatched AI workflows. Existing methods mainly rely on text descriptions and struggle with camera placement, a key component of previsualization. To address these issues, we introduce CinePreGen, a visual previsualization system enhanced with engine-powered diffusion. It features a novel camera and storyboard interface that offers dynamic control, from global to local camera adjustments. This is combined with a user-friendly AI rendering workflow, which aims to achieve consistent results through multi-masked IP-Adapter and engine simulation guidelines. In our comprehensive evaluation study, we demonstrate that our system reduces development viscosity (i.e., the complexity and challenges in the development process), meets users' needs for extensive control and iteration in the design process, and outperforms other AI video production workflows in cinematic camera movement, as shown by our experiments and a within-subjects user study. With its intuitive camera controls and realistic rendering of camera motion, CinePreGen shows great potential for improving video production for both individual creators and industry professionals.</description><subject>Cameras</subject><subject>Control systems</subject><subject>Controllability</subject><subject>Dynamic control</subject><subject>Generative artificial intelligence</subject><subject>Movement</subject><subject>Rendering</subject><subject>Video production</subject><subject>Workflow</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNi0ELwiAYQCUIGrX_IHQemG5t62qrjkHRdRj7DIfp0rmgX5-HfkCnd3jvzVBCGdtkVU7pAqXe94QQui1pUbAEXbgycHZwBLPDXDzBCcytGZ3VWtw14JvqwOJYTMoHodVHjMoaPCmBG_OIczbYNzjo8F5JGXyUKzSXQntIf1yi9aG58lM2OPsK4Me2t8GZqFpG6rrOWVUy9l_1BTomQFo</recordid><startdate>20240830</startdate><enddate>20240830</enddate><creator>Chen, Yiran</creator><creator>Rao, Anyi</creator><creator>Jiang, Xuekun</creator><creator>Xiao, Shishi</creator><creator>Ma, Ruiqing</creator><creator>Wang, Zeyu</creator><creator>Xiong, Hui</creator><creator>Dai, Bo</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20240830</creationdate><title>CinePreGen: Camera Controllable Video Previsualization via Engine-powered Diffusion</title><author>Chen, Yiran ; Rao, Anyi ; Jiang, Xuekun ; Xiao, Shishi ; Ma, Ruiqing ; Wang, Zeyu ; Xiong, Hui ; Dai, Bo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_30999438733</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Cameras</topic><topic>Control systems</topic><topic>Controllability</topic><topic>Dynamic control</topic><topic>Generative artificial intelligence</topic><topic>Movement</topic><topic>Rendering</topic><topic>Video production</topic><topic>Workflow</topic><toplevel>online_resources</toplevel><creatorcontrib>Chen, Yiran</creatorcontrib><creatorcontrib>Rao, Anyi</creatorcontrib><creatorcontrib>Jiang, Xuekun</creatorcontrib><creatorcontrib>Xiao, Shishi</creatorcontrib><creatorcontrib>Ma, Ruiqing</creatorcontrib><creatorcontrib>Wang, Zeyu</creatorcontrib><creatorcontrib>Xiong, Hui</creatorcontrib><creatorcontrib>Dai, Bo</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Yiran</au><au>Rao, Anyi</au><au>Jiang, Xuekun</au><au>Xiao, Shishi</au><au>Ma, Ruiqing</au><au>Wang, Zeyu</au><au>Xiong, Hui</au><au>Dai, Bo</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>CinePreGen: Camera Controllable Video Previsualization via Engine-powered Diffusion</atitle><jtitle>arXiv.org</jtitle><date>2024-08-30</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>With advancements in video generative AI models (e.g., SORA), creators are increasingly using these techniques to enhance video previsualization. However, they face challenges with incomplete and mismatched AI workflows. Existing methods mainly rely on text descriptions and struggle with camera placement, a key component of previsualization. To address these issues, we introduce CinePreGen, a visual previsualization system enhanced with engine-powered diffusion. It features a novel camera and storyboard interface that offers dynamic control, from global to local camera adjustments. This is combined with a user-friendly AI rendering workflow, which aims to achieve consistent results through multi-masked IP-Adapter and engine simulation guidelines. In our comprehensive evaluation study, we demonstrate that our system reduces development viscosity (i.e., the complexity and challenges in the development process), meets users' needs for extensive control and iteration in the design process, and outperforms other AI video production workflows in cinematic camera movement, as shown by our experiments and a within-subjects user study. With its intuitive camera controls and realistic rendering of camera motion, CinePreGen shows great potential for improving video production for both individual creators and industry professionals.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2024-08
issn 2331-8422
language eng
recordid cdi_proquest_journals_3099943873
source Free E- Journals
subjects Cameras
Control systems
Controllability
Dynamic control
Generative artificial intelligence
Movement
Rendering
Video production
Workflow
title CinePreGen: Camera Controllable Video Previsualization via Engine-powered Diffusion
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T08%3A59%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=CinePreGen:%20Camera%20Controllable%20Video%20Previsualization%20via%20Engine-powered%20Diffusion&rft.jtitle=arXiv.org&rft.au=Chen,%20Yiran&rft.date=2024-08-30&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E3099943873%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3099943873&rft_id=info:pmid/&rfr_iscdi=true