Complex Narayana Quaternions
Here, we first introduce complex Narayana numbers. Then, we describe a new quaternion sequence whose coefficients consist of complex Narayana numbers and that we named with complex Narayana quaternions. We also give the generating function, exponential generating function, Binet formula, and summati...
Gespeichert in:
Veröffentlicht in: | Computational mathematics and mathematical physics 2024-07, Vol.64 (7), p.1431-1442 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1442 |
---|---|
container_issue | 7 |
container_start_page | 1431 |
container_title | Computational mathematics and mathematical physics |
container_volume | 64 |
creator | Çelemoğlu, Çağla |
description | Here, we first introduce complex Narayana numbers. Then, we describe a new quaternion sequence whose coefficients consist of complex Narayana numbers and that we named with complex Narayana quaternions. We also give the generating function, exponential generating function, Binet formula, and summation formulas for these sequences. Finally, we obtain a matrix representation of complex Narayana quaternions and make an application related to the matrix representation of complex Narayana quaternions. |
doi_str_mv | 10.1134/S0965542524700738 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3099787095</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3099787095</sourcerecordid><originalsourceid>FETCH-LOGICAL-c198t-23a53bac054767b8d114b3b4a6c3ae4949b82a95c64a739357c49caee7cb18b03</originalsourceid><addsrcrecordid>eNp1kE1LxDAURYMoWEd_gOBiwHX15TtZStFRGBRR1-ElZmSGmbYmLTj_3pYKLsTVW9xz7oNLyDmFK0q5uH4Bq6QUTDKhATQ3B6SgUspSKcUOSTHG5Zgfk5OcNwBUWcMLclE1u3Ybv-aPmHCPNc6fe-xiqtdNnU_J0Qq3OZ793Bl5u7t9re7L5dPiobpZloFa05WMo-QeA0ihlfbmnVLhuReoAscorLDeMLQyKIGaWy51EDZgjDp4ajzwGbmcetvUfPYxd27T9KkeXjoO1mqjwcqBohMVUpNziivXpvUO095RcOMI7s8Ig8MmJw9s_RHTb_P_0jeJYFv1</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3099787095</pqid></control><display><type>article</type><title>Complex Narayana Quaternions</title><source>Springer Nature - Complete Springer Journals</source><creator>Çelemoğlu, Çağla</creator><creatorcontrib>Çelemoğlu, Çağla</creatorcontrib><description>Here, we first introduce complex Narayana numbers. Then, we describe a new quaternion sequence whose coefficients consist of complex Narayana numbers and that we named with complex Narayana quaternions. We also give the generating function, exponential generating function, Binet formula, and summation formulas for these sequences. Finally, we obtain a matrix representation of complex Narayana quaternions and make an application related to the matrix representation of complex Narayana quaternions.</description><identifier>ISSN: 0965-5425</identifier><identifier>EISSN: 1555-6662</identifier><identifier>DOI: 10.1134/S0965542524700738</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>Computational Mathematics and Numerical Analysis ; General Numerical Methods ; Mathematics ; Mathematics and Statistics ; Matrix representation ; Quaternions ; Sequences</subject><ispartof>Computational mathematics and mathematical physics, 2024-07, Vol.64 (7), p.1431-1442</ispartof><rights>Pleiades Publishing, Ltd. 2024. ISSN 0965-5425, Computational Mathematics and Mathematical Physics, 2024, Vol. 64, No. 7, pp. 1431–1442. © Pleiades Publishing, Ltd., 2024.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c198t-23a53bac054767b8d114b3b4a6c3ae4949b82a95c64a739357c49caee7cb18b03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1134/S0965542524700738$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1134/S0965542524700738$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,777,781,27905,27906,41469,42538,51300</link.rule.ids></links><search><creatorcontrib>Çelemoğlu, Çağla</creatorcontrib><title>Complex Narayana Quaternions</title><title>Computational mathematics and mathematical physics</title><addtitle>Comput. Math. and Math. Phys</addtitle><description>Here, we first introduce complex Narayana numbers. Then, we describe a new quaternion sequence whose coefficients consist of complex Narayana numbers and that we named with complex Narayana quaternions. We also give the generating function, exponential generating function, Binet formula, and summation formulas for these sequences. Finally, we obtain a matrix representation of complex Narayana quaternions and make an application related to the matrix representation of complex Narayana quaternions.</description><subject>Computational Mathematics and Numerical Analysis</subject><subject>General Numerical Methods</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Matrix representation</subject><subject>Quaternions</subject><subject>Sequences</subject><issn>0965-5425</issn><issn>1555-6662</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp1kE1LxDAURYMoWEd_gOBiwHX15TtZStFRGBRR1-ElZmSGmbYmLTj_3pYKLsTVW9xz7oNLyDmFK0q5uH4Bq6QUTDKhATQ3B6SgUspSKcUOSTHG5Zgfk5OcNwBUWcMLclE1u3Ybv-aPmHCPNc6fe-xiqtdNnU_J0Qq3OZ793Bl5u7t9re7L5dPiobpZloFa05WMo-QeA0ihlfbmnVLhuReoAscorLDeMLQyKIGaWy51EDZgjDp4ajzwGbmcetvUfPYxd27T9KkeXjoO1mqjwcqBohMVUpNziivXpvUO095RcOMI7s8Ig8MmJw9s_RHTb_P_0jeJYFv1</recordid><startdate>20240701</startdate><enddate>20240701</enddate><creator>Çelemoğlu, Çağla</creator><general>Pleiades Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>7U5</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20240701</creationdate><title>Complex Narayana Quaternions</title><author>Çelemoğlu, Çağla</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c198t-23a53bac054767b8d114b3b4a6c3ae4949b82a95c64a739357c49caee7cb18b03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Computational Mathematics and Numerical Analysis</topic><topic>General Numerical Methods</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Matrix representation</topic><topic>Quaternions</topic><topic>Sequences</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Çelemoğlu, Çağla</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Computational mathematics and mathematical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Çelemoğlu, Çağla</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Complex Narayana Quaternions</atitle><jtitle>Computational mathematics and mathematical physics</jtitle><stitle>Comput. Math. and Math. Phys</stitle><date>2024-07-01</date><risdate>2024</risdate><volume>64</volume><issue>7</issue><spage>1431</spage><epage>1442</epage><pages>1431-1442</pages><issn>0965-5425</issn><eissn>1555-6662</eissn><abstract>Here, we first introduce complex Narayana numbers. Then, we describe a new quaternion sequence whose coefficients consist of complex Narayana numbers and that we named with complex Narayana quaternions. We also give the generating function, exponential generating function, Binet formula, and summation formulas for these sequences. Finally, we obtain a matrix representation of complex Narayana quaternions and make an application related to the matrix representation of complex Narayana quaternions.</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.1134/S0965542524700738</doi><tpages>12</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0965-5425 |
ispartof | Computational mathematics and mathematical physics, 2024-07, Vol.64 (7), p.1431-1442 |
issn | 0965-5425 1555-6662 |
language | eng |
recordid | cdi_proquest_journals_3099787095 |
source | Springer Nature - Complete Springer Journals |
subjects | Computational Mathematics and Numerical Analysis General Numerical Methods Mathematics Mathematics and Statistics Matrix representation Quaternions Sequences |
title | Complex Narayana Quaternions |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T02%3A13%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Complex%20Narayana%20Quaternions&rft.jtitle=Computational%20mathematics%20and%20mathematical%20physics&rft.au=%C3%87elemo%C4%9Flu,%20%C3%87a%C4%9Fla&rft.date=2024-07-01&rft.volume=64&rft.issue=7&rft.spage=1431&rft.epage=1442&rft.pages=1431-1442&rft.issn=0965-5425&rft.eissn=1555-6662&rft_id=info:doi/10.1134/S0965542524700738&rft_dat=%3Cproquest_cross%3E3099787095%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3099787095&rft_id=info:pmid/&rfr_iscdi=true |