Complex Narayana Quaternions

Here, we first introduce complex Narayana numbers. Then, we describe a new quaternion sequence whose coefficients consist of complex Narayana numbers and that we named with complex Narayana quaternions. We also give the generating function, exponential generating function, Binet formula, and summati...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computational mathematics and mathematical physics 2024-07, Vol.64 (7), p.1431-1442
1. Verfasser: Çelemoğlu, Çağla
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1442
container_issue 7
container_start_page 1431
container_title Computational mathematics and mathematical physics
container_volume 64
creator Çelemoğlu, Çağla
description Here, we first introduce complex Narayana numbers. Then, we describe a new quaternion sequence whose coefficients consist of complex Narayana numbers and that we named with complex Narayana quaternions. We also give the generating function, exponential generating function, Binet formula, and summation formulas for these sequences. Finally, we obtain a matrix representation of complex Narayana quaternions and make an application related to the matrix representation of complex Narayana quaternions.
doi_str_mv 10.1134/S0965542524700738
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3099787095</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3099787095</sourcerecordid><originalsourceid>FETCH-LOGICAL-c198t-23a53bac054767b8d114b3b4a6c3ae4949b82a95c64a739357c49caee7cb18b03</originalsourceid><addsrcrecordid>eNp1kE1LxDAURYMoWEd_gOBiwHX15TtZStFRGBRR1-ElZmSGmbYmLTj_3pYKLsTVW9xz7oNLyDmFK0q5uH4Bq6QUTDKhATQ3B6SgUspSKcUOSTHG5Zgfk5OcNwBUWcMLclE1u3Ybv-aPmHCPNc6fe-xiqtdNnU_J0Qq3OZ793Bl5u7t9re7L5dPiobpZloFa05WMo-QeA0ihlfbmnVLhuReoAscorLDeMLQyKIGaWy51EDZgjDp4ajzwGbmcetvUfPYxd27T9KkeXjoO1mqjwcqBohMVUpNziivXpvUO095RcOMI7s8Ig8MmJw9s_RHTb_P_0jeJYFv1</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3099787095</pqid></control><display><type>article</type><title>Complex Narayana Quaternions</title><source>Springer Nature - Complete Springer Journals</source><creator>Çelemoğlu, Çağla</creator><creatorcontrib>Çelemoğlu, Çağla</creatorcontrib><description>Here, we first introduce complex Narayana numbers. Then, we describe a new quaternion sequence whose coefficients consist of complex Narayana numbers and that we named with complex Narayana quaternions. We also give the generating function, exponential generating function, Binet formula, and summation formulas for these sequences. Finally, we obtain a matrix representation of complex Narayana quaternions and make an application related to the matrix representation of complex Narayana quaternions.</description><identifier>ISSN: 0965-5425</identifier><identifier>EISSN: 1555-6662</identifier><identifier>DOI: 10.1134/S0965542524700738</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>Computational Mathematics and Numerical Analysis ; General Numerical Methods ; Mathematics ; Mathematics and Statistics ; Matrix representation ; Quaternions ; Sequences</subject><ispartof>Computational mathematics and mathematical physics, 2024-07, Vol.64 (7), p.1431-1442</ispartof><rights>Pleiades Publishing, Ltd. 2024. ISSN 0965-5425, Computational Mathematics and Mathematical Physics, 2024, Vol. 64, No. 7, pp. 1431–1442. © Pleiades Publishing, Ltd., 2024.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c198t-23a53bac054767b8d114b3b4a6c3ae4949b82a95c64a739357c49caee7cb18b03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1134/S0965542524700738$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1134/S0965542524700738$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,777,781,27905,27906,41469,42538,51300</link.rule.ids></links><search><creatorcontrib>Çelemoğlu, Çağla</creatorcontrib><title>Complex Narayana Quaternions</title><title>Computational mathematics and mathematical physics</title><addtitle>Comput. Math. and Math. Phys</addtitle><description>Here, we first introduce complex Narayana numbers. Then, we describe a new quaternion sequence whose coefficients consist of complex Narayana numbers and that we named with complex Narayana quaternions. We also give the generating function, exponential generating function, Binet formula, and summation formulas for these sequences. Finally, we obtain a matrix representation of complex Narayana quaternions and make an application related to the matrix representation of complex Narayana quaternions.</description><subject>Computational Mathematics and Numerical Analysis</subject><subject>General Numerical Methods</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Matrix representation</subject><subject>Quaternions</subject><subject>Sequences</subject><issn>0965-5425</issn><issn>1555-6662</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp1kE1LxDAURYMoWEd_gOBiwHX15TtZStFRGBRR1-ElZmSGmbYmLTj_3pYKLsTVW9xz7oNLyDmFK0q5uH4Bq6QUTDKhATQ3B6SgUspSKcUOSTHG5Zgfk5OcNwBUWcMLclE1u3Ybv-aPmHCPNc6fe-xiqtdNnU_J0Qq3OZ793Bl5u7t9re7L5dPiobpZloFa05WMo-QeA0ihlfbmnVLhuReoAscorLDeMLQyKIGaWy51EDZgjDp4ajzwGbmcetvUfPYxd27T9KkeXjoO1mqjwcqBohMVUpNziivXpvUO095RcOMI7s8Ig8MmJw9s_RHTb_P_0jeJYFv1</recordid><startdate>20240701</startdate><enddate>20240701</enddate><creator>Çelemoğlu, Çağla</creator><general>Pleiades Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>7U5</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20240701</creationdate><title>Complex Narayana Quaternions</title><author>Çelemoğlu, Çağla</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c198t-23a53bac054767b8d114b3b4a6c3ae4949b82a95c64a739357c49caee7cb18b03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Computational Mathematics and Numerical Analysis</topic><topic>General Numerical Methods</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Matrix representation</topic><topic>Quaternions</topic><topic>Sequences</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Çelemoğlu, Çağla</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Computational mathematics and mathematical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Çelemoğlu, Çağla</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Complex Narayana Quaternions</atitle><jtitle>Computational mathematics and mathematical physics</jtitle><stitle>Comput. Math. and Math. Phys</stitle><date>2024-07-01</date><risdate>2024</risdate><volume>64</volume><issue>7</issue><spage>1431</spage><epage>1442</epage><pages>1431-1442</pages><issn>0965-5425</issn><eissn>1555-6662</eissn><abstract>Here, we first introduce complex Narayana numbers. Then, we describe a new quaternion sequence whose coefficients consist of complex Narayana numbers and that we named with complex Narayana quaternions. We also give the generating function, exponential generating function, Binet formula, and summation formulas for these sequences. Finally, we obtain a matrix representation of complex Narayana quaternions and make an application related to the matrix representation of complex Narayana quaternions.</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.1134/S0965542524700738</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0965-5425
ispartof Computational mathematics and mathematical physics, 2024-07, Vol.64 (7), p.1431-1442
issn 0965-5425
1555-6662
language eng
recordid cdi_proquest_journals_3099787095
source Springer Nature - Complete Springer Journals
subjects Computational Mathematics and Numerical Analysis
General Numerical Methods
Mathematics
Mathematics and Statistics
Matrix representation
Quaternions
Sequences
title Complex Narayana Quaternions
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T02%3A13%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Complex%20Narayana%20Quaternions&rft.jtitle=Computational%20mathematics%20and%20mathematical%20physics&rft.au=%C3%87elemo%C4%9Flu,%20%C3%87a%C4%9Fla&rft.date=2024-07-01&rft.volume=64&rft.issue=7&rft.spage=1431&rft.epage=1442&rft.pages=1431-1442&rft.issn=0965-5425&rft.eissn=1555-6662&rft_id=info:doi/10.1134/S0965542524700738&rft_dat=%3Cproquest_cross%3E3099787095%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3099787095&rft_id=info:pmid/&rfr_iscdi=true