Stability and Deformation Criteria in Free Boundary CMC Immersions
Let ∑n and M n+1 be smooth manifolds with smooth boundary. Given a free boundary constant mean curvature (CMC) immersion φ: ∑ → M, we found results related to the existence and uniqueness of a deformation family of φ, {φt}t ∈I , composed by free boundary CMC immersions. In addition, we give to some...
Gespeichert in:
Veröffentlicht in: | Revista colombiana de matemáticas 2023, Vol.57 (Supl), p.1-26 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 26 |
---|---|
container_issue | Supl |
container_start_page | 1 |
container_title | Revista colombiana de matemáticas |
container_volume | 57 |
creator | Rodríguez Cárdenas, Carlos Wilson |
description | Let ∑n and M n+1 be smooth manifolds with smooth boundary. Given a free boundary constant mean curvature (CMC) immersion φ: ∑ → M, we found results related to the existence and uniqueness of a deformation family of φ, {φt}t ∈I , composed by free boundary CMC immersions. In addition, we give to some criteria of stability and unstability for this type of deformations. These results are obtained from properties of the eigenvalues and eigenfunctions of the Jacobi operator Jφ associated to φ and establishing conditions for this operator such as Dim(Ker(Jφ)) = 0, or if Dim(Ker(Jφ)) = 1 and, for f ∈ Ker(Jφ); f ≠ 0, ∫∑ volφ*(g) ≠ 0. The deformation family is unique up to diffeomorphisms. |
doi_str_mv | 10.15446/recolma.v57nSupl.112445 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3099520584</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3099520584</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1975-a85e1131e41ce563bd88bac97b1664dd918e6ddc66e5f6b02b8b4e4d0f2a4ad53</originalsourceid><addsrcrecordid>eNo1kF1LwzAYhYMoOOb-Q8DrzrzNR9NLV50OJl5Mr0PavIVI28ykFfbvLW5enZuHcw4PIRTYGqQQ6iFiE7rern9kMRymY7cGyIWQV2SRc1lkAhi7JgvGuMgKkatbskrJ1yznoArN5YJsDqOtfefHE7WDo0_Yhtjb0YeBVtGPGL2lfqDbiEg3YRqcjSdavVV01_cY08ylO3LT2i7h6pJL8rl9_qhes_37y6563GcNlIXMrJYIwAEFNCgVr53WtW3KogalhHMlaFTONUqhbNX8sda1QOFYm1thneRLcn_uPcbwPWEazVeY4jBPGs7KUuZMajFT-kw1MaQUsTXH6Pv5tQFm_qSZizTzL82cpfFfhlJj_A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3099520584</pqid></control><display><type>article</type><title>Stability and Deformation Criteria in Free Boundary CMC Immersions</title><source>Alma/SFX Local Collection</source><creator>Rodríguez Cárdenas, Carlos Wilson</creator><creatorcontrib>Rodríguez Cárdenas, Carlos Wilson</creatorcontrib><description>Let ∑n and M n+1 be smooth manifolds with smooth boundary. Given a free boundary constant mean curvature (CMC) immersion φ: ∑ → M, we found results related to the existence and uniqueness of a deformation family of φ, {φt}t ∈I , composed by free boundary CMC immersions. In addition, we give to some criteria of stability and unstability for this type of deformations. These results are obtained from properties of the eigenvalues and eigenfunctions of the Jacobi operator Jφ associated to φ and establishing conditions for this operator such as Dim(Ker(Jφ)) = 0, or if Dim(Ker(Jφ)) = 1 and, for f ∈ Ker(Jφ); f ≠ 0, ∫∑ volφ*(g) ≠ 0. The deformation family is unique up to diffeomorphisms.</description><identifier>ISSN: 0034-7426</identifier><identifier>EISSN: 2357-4100</identifier><identifier>DOI: 10.15446/recolma.v57nSupl.112445</identifier><language>eng</language><publisher>Bogota: Universidad Nacional de Colombia</publisher><subject>Deformation ; Eigenvalues ; Eigenvectors ; Free boundaries ; Isomorphism ; Smooth boundaries ; Stability criteria</subject><ispartof>Revista colombiana de matemáticas, 2023, Vol.57 (Supl), p.1-26</ispartof><rights>2023. This work is published under https://creativecommons.org/licenses/by/4.0 (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c1975-a85e1131e41ce563bd88bac97b1664dd918e6ddc66e5f6b02b8b4e4d0f2a4ad53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,4010,27900,27901,27902</link.rule.ids></links><search><creatorcontrib>Rodríguez Cárdenas, Carlos Wilson</creatorcontrib><title>Stability and Deformation Criteria in Free Boundary CMC Immersions</title><title>Revista colombiana de matemáticas</title><description>Let ∑n and M n+1 be smooth manifolds with smooth boundary. Given a free boundary constant mean curvature (CMC) immersion φ: ∑ → M, we found results related to the existence and uniqueness of a deformation family of φ, {φt}t ∈I , composed by free boundary CMC immersions. In addition, we give to some criteria of stability and unstability for this type of deformations. These results are obtained from properties of the eigenvalues and eigenfunctions of the Jacobi operator Jφ associated to φ and establishing conditions for this operator such as Dim(Ker(Jφ)) = 0, or if Dim(Ker(Jφ)) = 1 and, for f ∈ Ker(Jφ); f ≠ 0, ∫∑ volφ*(g) ≠ 0. The deformation family is unique up to diffeomorphisms.</description><subject>Deformation</subject><subject>Eigenvalues</subject><subject>Eigenvectors</subject><subject>Free boundaries</subject><subject>Isomorphism</subject><subject>Smooth boundaries</subject><subject>Stability criteria</subject><issn>0034-7426</issn><issn>2357-4100</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNo1kF1LwzAYhYMoOOb-Q8DrzrzNR9NLV50OJl5Mr0PavIVI28ykFfbvLW5enZuHcw4PIRTYGqQQ6iFiE7rern9kMRymY7cGyIWQV2SRc1lkAhi7JgvGuMgKkatbskrJ1yznoArN5YJsDqOtfefHE7WDo0_Yhtjb0YeBVtGPGL2lfqDbiEg3YRqcjSdavVV01_cY08ylO3LT2i7h6pJL8rl9_qhes_37y6563GcNlIXMrJYIwAEFNCgVr53WtW3KogalhHMlaFTONUqhbNX8sda1QOFYm1thneRLcn_uPcbwPWEazVeY4jBPGs7KUuZMajFT-kw1MaQUsTXH6Pv5tQFm_qSZizTzL82cpfFfhlJj_A</recordid><startdate>2023</startdate><enddate>2023</enddate><creator>Rodríguez Cárdenas, Carlos Wilson</creator><general>Universidad Nacional de Colombia</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7TB</scope><scope>7XB</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>CLZPN</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>KR7</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>M2O</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P62</scope><scope>PADUT</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope></search><sort><creationdate>2023</creationdate><title>Stability and Deformation Criteria in Free Boundary CMC Immersions</title><author>Rodríguez Cárdenas, Carlos Wilson</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1975-a85e1131e41ce563bd88bac97b1664dd918e6ddc66e5f6b02b8b4e4d0f2a4ad53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Deformation</topic><topic>Eigenvalues</topic><topic>Eigenvectors</topic><topic>Free boundaries</topic><topic>Isomorphism</topic><topic>Smooth boundaries</topic><topic>Stability criteria</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rodríguez Cárdenas, Carlos Wilson</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Database (1962 - current)</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>Latin America & Iberia Database</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>ProQuest Research Library</collection><collection>ProQuest Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Research Library China</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><collection>ProQuest Central Basic</collection><jtitle>Revista colombiana de matemáticas</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rodríguez Cárdenas, Carlos Wilson</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Stability and Deformation Criteria in Free Boundary CMC Immersions</atitle><jtitle>Revista colombiana de matemáticas</jtitle><date>2023</date><risdate>2023</risdate><volume>57</volume><issue>Supl</issue><spage>1</spage><epage>26</epage><pages>1-26</pages><issn>0034-7426</issn><eissn>2357-4100</eissn><abstract>Let ∑n and M n+1 be smooth manifolds with smooth boundary. Given a free boundary constant mean curvature (CMC) immersion φ: ∑ → M, we found results related to the existence and uniqueness of a deformation family of φ, {φt}t ∈I , composed by free boundary CMC immersions. In addition, we give to some criteria of stability and unstability for this type of deformations. These results are obtained from properties of the eigenvalues and eigenfunctions of the Jacobi operator Jφ associated to φ and establishing conditions for this operator such as Dim(Ker(Jφ)) = 0, or if Dim(Ker(Jφ)) = 1 and, for f ∈ Ker(Jφ); f ≠ 0, ∫∑ volφ*(g) ≠ 0. The deformation family is unique up to diffeomorphisms.</abstract><cop>Bogota</cop><pub>Universidad Nacional de Colombia</pub><doi>10.15446/recolma.v57nSupl.112445</doi><tpages>26</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0034-7426 |
ispartof | Revista colombiana de matemáticas, 2023, Vol.57 (Supl), p.1-26 |
issn | 0034-7426 2357-4100 |
language | eng |
recordid | cdi_proquest_journals_3099520584 |
source | Alma/SFX Local Collection |
subjects | Deformation Eigenvalues Eigenvectors Free boundaries Isomorphism Smooth boundaries Stability criteria |
title | Stability and Deformation Criteria in Free Boundary CMC Immersions |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T07%3A48%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Stability%20and%20Deformation%20Criteria%20in%20Free%20Boundary%20CMC%20Immersions&rft.jtitle=Revista%20colombiana%20de%20matem%C3%A1ticas&rft.au=Rodr%C3%ADguez%20C%C3%A1rdenas,%20Carlos%20Wilson&rft.date=2023&rft.volume=57&rft.issue=Supl&rft.spage=1&rft.epage=26&rft.pages=1-26&rft.issn=0034-7426&rft.eissn=2357-4100&rft_id=info:doi/10.15446/recolma.v57nSupl.112445&rft_dat=%3Cproquest_cross%3E3099520584%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3099520584&rft_id=info:pmid/&rfr_iscdi=true |