Stability and Deformation Criteria in Free Boundary CMC Immersions

Let ∑n and M n+1 be smooth manifolds with smooth boundary. Given a free boundary constant mean curvature (CMC) immersion φ: ∑ → M, we found results related to the existence and uniqueness of a deformation family of φ, {φt}t ∈I , composed by free boundary CMC immersions. In addition, we give to some...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Revista colombiana de matemáticas 2023, Vol.57 (Supl), p.1-26
1. Verfasser: Rodríguez Cárdenas, Carlos Wilson
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 26
container_issue Supl
container_start_page 1
container_title Revista colombiana de matemáticas
container_volume 57
creator Rodríguez Cárdenas, Carlos Wilson
description Let ∑n and M n+1 be smooth manifolds with smooth boundary. Given a free boundary constant mean curvature (CMC) immersion φ: ∑ → M, we found results related to the existence and uniqueness of a deformation family of φ, {φt}t ∈I , composed by free boundary CMC immersions. In addition, we give to some criteria of stability and unstability for this type of deformations. These results are obtained from properties of the eigenvalues and eigenfunctions of the Jacobi operator Jφ associated to φ and establishing conditions for this operator such as Dim(Ker(Jφ)) = 0, or if Dim(Ker(Jφ)) = 1 and, for f ∈ Ker(Jφ); f ≠ 0, ∫∑ volφ*(g) ≠ 0. The deformation family is unique up to diffeomorphisms.
doi_str_mv 10.15446/recolma.v57nSupl.112445
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3099520584</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3099520584</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1975-a85e1131e41ce563bd88bac97b1664dd918e6ddc66e5f6b02b8b4e4d0f2a4ad53</originalsourceid><addsrcrecordid>eNo1kF1LwzAYhYMoOOb-Q8DrzrzNR9NLV50OJl5Mr0PavIVI28ykFfbvLW5enZuHcw4PIRTYGqQQ6iFiE7rern9kMRymY7cGyIWQV2SRc1lkAhi7JgvGuMgKkatbskrJ1yznoArN5YJsDqOtfefHE7WDo0_Yhtjb0YeBVtGPGL2lfqDbiEg3YRqcjSdavVV01_cY08ylO3LT2i7h6pJL8rl9_qhes_37y6563GcNlIXMrJYIwAEFNCgVr53WtW3KogalhHMlaFTONUqhbNX8sda1QOFYm1thneRLcn_uPcbwPWEazVeY4jBPGs7KUuZMajFT-kw1MaQUsTXH6Pv5tQFm_qSZizTzL82cpfFfhlJj_A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3099520584</pqid></control><display><type>article</type><title>Stability and Deformation Criteria in Free Boundary CMC Immersions</title><source>Alma/SFX Local Collection</source><creator>Rodríguez Cárdenas, Carlos Wilson</creator><creatorcontrib>Rodríguez Cárdenas, Carlos Wilson</creatorcontrib><description>Let ∑n and M n+1 be smooth manifolds with smooth boundary. Given a free boundary constant mean curvature (CMC) immersion φ: ∑ → M, we found results related to the existence and uniqueness of a deformation family of φ, {φt}t ∈I , composed by free boundary CMC immersions. In addition, we give to some criteria of stability and unstability for this type of deformations. These results are obtained from properties of the eigenvalues and eigenfunctions of the Jacobi operator Jφ associated to φ and establishing conditions for this operator such as Dim(Ker(Jφ)) = 0, or if Dim(Ker(Jφ)) = 1 and, for f ∈ Ker(Jφ); f ≠ 0, ∫∑ volφ*(g) ≠ 0. The deformation family is unique up to diffeomorphisms.</description><identifier>ISSN: 0034-7426</identifier><identifier>EISSN: 2357-4100</identifier><identifier>DOI: 10.15446/recolma.v57nSupl.112445</identifier><language>eng</language><publisher>Bogota: Universidad Nacional de Colombia</publisher><subject>Deformation ; Eigenvalues ; Eigenvectors ; Free boundaries ; Isomorphism ; Smooth boundaries ; Stability criteria</subject><ispartof>Revista colombiana de matemáticas, 2023, Vol.57 (Supl), p.1-26</ispartof><rights>2023. This work is published under https://creativecommons.org/licenses/by/4.0 (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c1975-a85e1131e41ce563bd88bac97b1664dd918e6ddc66e5f6b02b8b4e4d0f2a4ad53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,4010,27900,27901,27902</link.rule.ids></links><search><creatorcontrib>Rodríguez Cárdenas, Carlos Wilson</creatorcontrib><title>Stability and Deformation Criteria in Free Boundary CMC Immersions</title><title>Revista colombiana de matemáticas</title><description>Let ∑n and M n+1 be smooth manifolds with smooth boundary. Given a free boundary constant mean curvature (CMC) immersion φ: ∑ → M, we found results related to the existence and uniqueness of a deformation family of φ, {φt}t ∈I , composed by free boundary CMC immersions. In addition, we give to some criteria of stability and unstability for this type of deformations. These results are obtained from properties of the eigenvalues and eigenfunctions of the Jacobi operator Jφ associated to φ and establishing conditions for this operator such as Dim(Ker(Jφ)) = 0, or if Dim(Ker(Jφ)) = 1 and, for f ∈ Ker(Jφ); f ≠ 0, ∫∑ volφ*(g) ≠ 0. The deformation family is unique up to diffeomorphisms.</description><subject>Deformation</subject><subject>Eigenvalues</subject><subject>Eigenvectors</subject><subject>Free boundaries</subject><subject>Isomorphism</subject><subject>Smooth boundaries</subject><subject>Stability criteria</subject><issn>0034-7426</issn><issn>2357-4100</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNo1kF1LwzAYhYMoOOb-Q8DrzrzNR9NLV50OJl5Mr0PavIVI28ykFfbvLW5enZuHcw4PIRTYGqQQ6iFiE7rern9kMRymY7cGyIWQV2SRc1lkAhi7JgvGuMgKkatbskrJ1yznoArN5YJsDqOtfefHE7WDo0_Yhtjb0YeBVtGPGL2lfqDbiEg3YRqcjSdavVV01_cY08ylO3LT2i7h6pJL8rl9_qhes_37y6563GcNlIXMrJYIwAEFNCgVr53WtW3KogalhHMlaFTONUqhbNX8sda1QOFYm1thneRLcn_uPcbwPWEazVeY4jBPGs7KUuZMajFT-kw1MaQUsTXH6Pv5tQFm_qSZizTzL82cpfFfhlJj_A</recordid><startdate>2023</startdate><enddate>2023</enddate><creator>Rodríguez Cárdenas, Carlos Wilson</creator><general>Universidad Nacional de Colombia</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7TB</scope><scope>7XB</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>CLZPN</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>KR7</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>M2O</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P62</scope><scope>PADUT</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope></search><sort><creationdate>2023</creationdate><title>Stability and Deformation Criteria in Free Boundary CMC Immersions</title><author>Rodríguez Cárdenas, Carlos Wilson</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1975-a85e1131e41ce563bd88bac97b1664dd918e6ddc66e5f6b02b8b4e4d0f2a4ad53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Deformation</topic><topic>Eigenvalues</topic><topic>Eigenvectors</topic><topic>Free boundaries</topic><topic>Isomorphism</topic><topic>Smooth boundaries</topic><topic>Stability criteria</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rodríguez Cárdenas, Carlos Wilson</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Database‎ (1962 - current)</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>Latin America &amp; Iberia Database</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>ProQuest Research Library</collection><collection>ProQuest Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Research Library China</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><collection>ProQuest Central Basic</collection><jtitle>Revista colombiana de matemáticas</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rodríguez Cárdenas, Carlos Wilson</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Stability and Deformation Criteria in Free Boundary CMC Immersions</atitle><jtitle>Revista colombiana de matemáticas</jtitle><date>2023</date><risdate>2023</risdate><volume>57</volume><issue>Supl</issue><spage>1</spage><epage>26</epage><pages>1-26</pages><issn>0034-7426</issn><eissn>2357-4100</eissn><abstract>Let ∑n and M n+1 be smooth manifolds with smooth boundary. Given a free boundary constant mean curvature (CMC) immersion φ: ∑ → M, we found results related to the existence and uniqueness of a deformation family of φ, {φt}t ∈I , composed by free boundary CMC immersions. In addition, we give to some criteria of stability and unstability for this type of deformations. These results are obtained from properties of the eigenvalues and eigenfunctions of the Jacobi operator Jφ associated to φ and establishing conditions for this operator such as Dim(Ker(Jφ)) = 0, or if Dim(Ker(Jφ)) = 1 and, for f ∈ Ker(Jφ); f ≠ 0, ∫∑ volφ*(g) ≠ 0. The deformation family is unique up to diffeomorphisms.</abstract><cop>Bogota</cop><pub>Universidad Nacional de Colombia</pub><doi>10.15446/recolma.v57nSupl.112445</doi><tpages>26</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0034-7426
ispartof Revista colombiana de matemáticas, 2023, Vol.57 (Supl), p.1-26
issn 0034-7426
2357-4100
language eng
recordid cdi_proquest_journals_3099520584
source Alma/SFX Local Collection
subjects Deformation
Eigenvalues
Eigenvectors
Free boundaries
Isomorphism
Smooth boundaries
Stability criteria
title Stability and Deformation Criteria in Free Boundary CMC Immersions
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T07%3A48%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Stability%20and%20Deformation%20Criteria%20in%20Free%20Boundary%20CMC%20Immersions&rft.jtitle=Revista%20colombiana%20de%20matem%C3%A1ticas&rft.au=Rodr%C3%ADguez%20C%C3%A1rdenas,%20Carlos%20Wilson&rft.date=2023&rft.volume=57&rft.issue=Supl&rft.spage=1&rft.epage=26&rft.pages=1-26&rft.issn=0034-7426&rft.eissn=2357-4100&rft_id=info:doi/10.15446/recolma.v57nSupl.112445&rft_dat=%3Cproquest_cross%3E3099520584%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3099520584&rft_id=info:pmid/&rfr_iscdi=true