Mechanistic insights into chemical corrosion of AA1050 in ethanol‐blended fuels with water contamination via phase field modeling

Aluminum alloys are widely used in automotive construction, and since the introduction of biogenic ethanol into fuels, the issue of nonaqueous alcoholate corrosion has become an important topic. In this paper, the kinetics of AA1050 temperature‐induced alcoholate pitting corrosion are examined exper...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Materials and corrosion 2024-09, Vol.75 (9), p.1216-1227
Hauptverfasser: Gazenbiller, Eugen, Arya, Visheet, Reitz, Rüdiger, Oechsner, Matthias, Zheludkevich, Mikhail L., Höche, Daniel
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1227
container_issue 9
container_start_page 1216
container_title Materials and corrosion
container_volume 75
creator Gazenbiller, Eugen
Arya, Visheet
Reitz, Rüdiger
Oechsner, Matthias
Zheludkevich, Mikhail L.
Höche, Daniel
description Aluminum alloys are widely used in automotive construction, and since the introduction of biogenic ethanol into fuels, the issue of nonaqueous alcoholate corrosion has become an important topic. In this paper, the kinetics of AA1050 temperature‐induced alcoholate pitting corrosion are examined experimentally with a specially constructed microreactor. The generated data are utilized to create a phase field model for the pit growth phase. The effects of ethanol‐blend composition and water content are quantitatively assessed and simulated. Phase field simulations allow for the first time the mechanistic characterization of the chemical corrosion process with a water content of up to 0.3% and an estimation of relevant reaction parameters at temperatures of up to 150°C. The approach can further be utilized to develop strategies for minimizing corrosion risk in‐service. A novel microreactor is used to generate data for alcoholate corrosion of AA1050. The data are utilized to create a phase field model, which enables understanding of the present corrosion mechanism depending on temperature and water content.
doi_str_mv 10.1002/maco.202414388
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3099425182</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3099425182</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2728-a7404a097153ba59bb5d000a2b32a0f975e8418dad8b06ff6aaa3f10e76d217b3</originalsourceid><addsrcrecordid>eNqFkD1PwzAQhi0EEuVjZbbEnHLnOHEyVhVfUlEXmKNLYhOjJC6xS9UNiT_Ab-SXkKoIRqa74Xne072MXSBMEUBcdVS5qQAhUcZZdsAmmAiMJKr0kE0glypKENUxO_H-BQAxj-WEfTzoqqHe-mArbntvn5vgxyU4XjW6sxW1vHLD4Lx1PXeGz2YICYwE12EUXfv1_lm2uq91zc1at55vbGj4hoIeRrMP1Nmews5-s8RXDXnNjdVtzTtX69b2z2fsyFDr9fnPPGVPN9eP87tosby9n88WUSWUyCJSEiRBrjCJS0ryskxqACBRxoLA5CrRmcSspjorITUmJaLYIGiV1gJVGZ-yy33uanCva-1D8eLWQz-eLGLIcykSzMRITfdUNT7tB22K1WA7GrYFQrErutgVXfwWPQr5XtjYVm__oYuH2Xz5534DFnqEkg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3099425182</pqid></control><display><type>article</type><title>Mechanistic insights into chemical corrosion of AA1050 in ethanol‐blended fuels with water contamination via phase field modeling</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Gazenbiller, Eugen ; Arya, Visheet ; Reitz, Rüdiger ; Oechsner, Matthias ; Zheludkevich, Mikhail L. ; Höche, Daniel</creator><creatorcontrib>Gazenbiller, Eugen ; Arya, Visheet ; Reitz, Rüdiger ; Oechsner, Matthias ; Zheludkevich, Mikhail L. ; Höche, Daniel</creatorcontrib><description>Aluminum alloys are widely used in automotive construction, and since the introduction of biogenic ethanol into fuels, the issue of nonaqueous alcoholate corrosion has become an important topic. In this paper, the kinetics of AA1050 temperature‐induced alcoholate pitting corrosion are examined experimentally with a specially constructed microreactor. The generated data are utilized to create a phase field model for the pit growth phase. The effects of ethanol‐blend composition and water content are quantitatively assessed and simulated. Phase field simulations allow for the first time the mechanistic characterization of the chemical corrosion process with a water content of up to 0.3% and an estimation of relevant reaction parameters at temperatures of up to 150°C. The approach can further be utilized to develop strategies for minimizing corrosion risk in‐service. A novel microreactor is used to generate data for alcoholate corrosion of AA1050. The data are utilized to create a phase field model, which enables understanding of the present corrosion mechanism depending on temperature and water content.</description><identifier>ISSN: 0947-5117</identifier><identifier>EISSN: 1521-4176</identifier><identifier>DOI: 10.1002/maco.202414388</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>aluminum ; Aluminum base alloys ; Automotive fuels ; Chemical composition ; Composition effects ; Corrosion effects ; Ethanol ; finite element method ; Microreactors ; Moisture content ; non‐aqueous corrosion ; Parameter estimation ; phase field model ; Pitting (corrosion) ; Reaction kinetics</subject><ispartof>Materials and corrosion, 2024-09, Vol.75 (9), p.1216-1227</ispartof><rights>2024 The Authors. published by Wiley‐VCH GmbH.</rights><rights>2024. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2728-a7404a097153ba59bb5d000a2b32a0f975e8418dad8b06ff6aaa3f10e76d217b3</cites><orcidid>0000-0002-6361-4275</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fmaco.202414388$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fmaco.202414388$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Gazenbiller, Eugen</creatorcontrib><creatorcontrib>Arya, Visheet</creatorcontrib><creatorcontrib>Reitz, Rüdiger</creatorcontrib><creatorcontrib>Oechsner, Matthias</creatorcontrib><creatorcontrib>Zheludkevich, Mikhail L.</creatorcontrib><creatorcontrib>Höche, Daniel</creatorcontrib><title>Mechanistic insights into chemical corrosion of AA1050 in ethanol‐blended fuels with water contamination via phase field modeling</title><title>Materials and corrosion</title><description>Aluminum alloys are widely used in automotive construction, and since the introduction of biogenic ethanol into fuels, the issue of nonaqueous alcoholate corrosion has become an important topic. In this paper, the kinetics of AA1050 temperature‐induced alcoholate pitting corrosion are examined experimentally with a specially constructed microreactor. The generated data are utilized to create a phase field model for the pit growth phase. The effects of ethanol‐blend composition and water content are quantitatively assessed and simulated. Phase field simulations allow for the first time the mechanistic characterization of the chemical corrosion process with a water content of up to 0.3% and an estimation of relevant reaction parameters at temperatures of up to 150°C. The approach can further be utilized to develop strategies for minimizing corrosion risk in‐service. A novel microreactor is used to generate data for alcoholate corrosion of AA1050. The data are utilized to create a phase field model, which enables understanding of the present corrosion mechanism depending on temperature and water content.</description><subject>aluminum</subject><subject>Aluminum base alloys</subject><subject>Automotive fuels</subject><subject>Chemical composition</subject><subject>Composition effects</subject><subject>Corrosion effects</subject><subject>Ethanol</subject><subject>finite element method</subject><subject>Microreactors</subject><subject>Moisture content</subject><subject>non‐aqueous corrosion</subject><subject>Parameter estimation</subject><subject>phase field model</subject><subject>Pitting (corrosion)</subject><subject>Reaction kinetics</subject><issn>0947-5117</issn><issn>1521-4176</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><recordid>eNqFkD1PwzAQhi0EEuVjZbbEnHLnOHEyVhVfUlEXmKNLYhOjJC6xS9UNiT_Ab-SXkKoIRqa74Xne072MXSBMEUBcdVS5qQAhUcZZdsAmmAiMJKr0kE0glypKENUxO_H-BQAxj-WEfTzoqqHe-mArbntvn5vgxyU4XjW6sxW1vHLD4Lx1PXeGz2YICYwE12EUXfv1_lm2uq91zc1at55vbGj4hoIeRrMP1Nmews5-s8RXDXnNjdVtzTtX69b2z2fsyFDr9fnPPGVPN9eP87tosby9n88WUSWUyCJSEiRBrjCJS0ryskxqACBRxoLA5CrRmcSspjorITUmJaLYIGiV1gJVGZ-yy33uanCva-1D8eLWQz-eLGLIcykSzMRITfdUNT7tB22K1WA7GrYFQrErutgVXfwWPQr5XtjYVm__oYuH2Xz5534DFnqEkg</recordid><startdate>202409</startdate><enddate>202409</enddate><creator>Gazenbiller, Eugen</creator><creator>Arya, Visheet</creator><creator>Reitz, Rüdiger</creator><creator>Oechsner, Matthias</creator><creator>Zheludkevich, Mikhail L.</creator><creator>Höche, Daniel</creator><general>Wiley Subscription Services, Inc</general><scope>24P</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SE</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><orcidid>https://orcid.org/0000-0002-6361-4275</orcidid></search><sort><creationdate>202409</creationdate><title>Mechanistic insights into chemical corrosion of AA1050 in ethanol‐blended fuels with water contamination via phase field modeling</title><author>Gazenbiller, Eugen ; Arya, Visheet ; Reitz, Rüdiger ; Oechsner, Matthias ; Zheludkevich, Mikhail L. ; Höche, Daniel</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2728-a7404a097153ba59bb5d000a2b32a0f975e8418dad8b06ff6aaa3f10e76d217b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>aluminum</topic><topic>Aluminum base alloys</topic><topic>Automotive fuels</topic><topic>Chemical composition</topic><topic>Composition effects</topic><topic>Corrosion effects</topic><topic>Ethanol</topic><topic>finite element method</topic><topic>Microreactors</topic><topic>Moisture content</topic><topic>non‐aqueous corrosion</topic><topic>Parameter estimation</topic><topic>phase field model</topic><topic>Pitting (corrosion)</topic><topic>Reaction kinetics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gazenbiller, Eugen</creatorcontrib><creatorcontrib>Arya, Visheet</creatorcontrib><creatorcontrib>Reitz, Rüdiger</creatorcontrib><creatorcontrib>Oechsner, Matthias</creatorcontrib><creatorcontrib>Zheludkevich, Mikhail L.</creatorcontrib><creatorcontrib>Höche, Daniel</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>CrossRef</collection><collection>Corrosion Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Materials and corrosion</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gazenbiller, Eugen</au><au>Arya, Visheet</au><au>Reitz, Rüdiger</au><au>Oechsner, Matthias</au><au>Zheludkevich, Mikhail L.</au><au>Höche, Daniel</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mechanistic insights into chemical corrosion of AA1050 in ethanol‐blended fuels with water contamination via phase field modeling</atitle><jtitle>Materials and corrosion</jtitle><date>2024-09</date><risdate>2024</risdate><volume>75</volume><issue>9</issue><spage>1216</spage><epage>1227</epage><pages>1216-1227</pages><issn>0947-5117</issn><eissn>1521-4176</eissn><abstract>Aluminum alloys are widely used in automotive construction, and since the introduction of biogenic ethanol into fuels, the issue of nonaqueous alcoholate corrosion has become an important topic. In this paper, the kinetics of AA1050 temperature‐induced alcoholate pitting corrosion are examined experimentally with a specially constructed microreactor. The generated data are utilized to create a phase field model for the pit growth phase. The effects of ethanol‐blend composition and water content are quantitatively assessed and simulated. Phase field simulations allow for the first time the mechanistic characterization of the chemical corrosion process with a water content of up to 0.3% and an estimation of relevant reaction parameters at temperatures of up to 150°C. The approach can further be utilized to develop strategies for minimizing corrosion risk in‐service. A novel microreactor is used to generate data for alcoholate corrosion of AA1050. The data are utilized to create a phase field model, which enables understanding of the present corrosion mechanism depending on temperature and water content.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/maco.202414388</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-6361-4275</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0947-5117
ispartof Materials and corrosion, 2024-09, Vol.75 (9), p.1216-1227
issn 0947-5117
1521-4176
language eng
recordid cdi_proquest_journals_3099425182
source Wiley Online Library Journals Frontfile Complete
subjects aluminum
Aluminum base alloys
Automotive fuels
Chemical composition
Composition effects
Corrosion effects
Ethanol
finite element method
Microreactors
Moisture content
non‐aqueous corrosion
Parameter estimation
phase field model
Pitting (corrosion)
Reaction kinetics
title Mechanistic insights into chemical corrosion of AA1050 in ethanol‐blended fuels with water contamination via phase field modeling
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T18%3A33%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mechanistic%20insights%20into%20chemical%20corrosion%20of%20AA1050%20in%20ethanol%E2%80%90blended%20fuels%20with%20water%20contamination%20via%20phase%20field%20modeling&rft.jtitle=Materials%20and%20corrosion&rft.au=Gazenbiller,%20Eugen&rft.date=2024-09&rft.volume=75&rft.issue=9&rft.spage=1216&rft.epage=1227&rft.pages=1216-1227&rft.issn=0947-5117&rft.eissn=1521-4176&rft_id=info:doi/10.1002/maco.202414388&rft_dat=%3Cproquest_cross%3E3099425182%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3099425182&rft_id=info:pmid/&rfr_iscdi=true