Enhancement of Low Temperature Superionic Conductivity by Suppression of Li Site Ordering in Li7Si2–xGexS7I

Ge4+ substitution into the recently discovered superionic conductor Li7Si2S7I is demonstrated by synthesis of Li7Si2–xGexS7I, where x≤1.2. The anion packing and tetrahedral silicon location of Li7Si2S7I are retained upon substitution. Single crystal X‐ray diffraction shows that substitution of large...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Angewandte Chemie 2024-09, Vol.136 (37), p.n/a
Hauptverfasser: Han, Guopeng, Daniels, Luke M., Vasylenko, Andrij, Morrison, Kate A., Corti, Lucia, Collins, Chris M., Niu, Hongjun, Chen, Ruiyong, Roberston, Craig M., Blanc, Frédéric, Dyer, Matthew S., Claridge, John B., Rosseinsky, Matthew J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 37
container_start_page
container_title Angewandte Chemie
container_volume 136
creator Han, Guopeng
Daniels, Luke M.
Vasylenko, Andrij
Morrison, Kate A.
Corti, Lucia
Collins, Chris M.
Niu, Hongjun
Chen, Ruiyong
Roberston, Craig M.
Blanc, Frédéric
Dyer, Matthew S.
Claridge, John B.
Rosseinsky, Matthew J.
description Ge4+ substitution into the recently discovered superionic conductor Li7Si2S7I is demonstrated by synthesis of Li7Si2–xGexS7I, where x≤1.2. The anion packing and tetrahedral silicon location of Li7Si2S7I are retained upon substitution. Single crystal X‐ray diffraction shows that substitution of larger Ge4+ for Si4+ expands the unit cell volume and further increases Li+ site disorder, such that Li7Si0.88Ge1.12S7I has one Li+ site more (sixteen in total) than Li7Si2S7I. The ionic conductivity of Li7Si0.8Ge1.2S7I (x=1.2) at 303 K is 1.02(3)×10−2 S cm−1 with low activation energies for Li+ transport demonstrated over a wide temperature range by AC impedance and 7Li NMR spectroscopy. All sixteen Li+ sites remain occupied to temperatures as low as 30 K in Li7Si0.88Ge1.12S7I as a result of the structural expansion. This differs from Li7Si2S7I, where the partial Li+ site ordering observed below room temperature reduces the ionic conductivity. The suppression of Li+ site depopulation by Ge4+ substitution retains the high mobility to temperatures as low as 200 K, yielding low temperature performance comparable with state‐of‐the‐art Li+ ion conducting materials. Isovalent substitution of Ge4+ for Si4+ in Li7Si2–xGexS7I is observed for x≤1.2. Control of unit cell volume via this substitution enhances Li+ site disorder beyond Li7Si2S7I. This extensive disorder is stabilised to 30 K with very low activation energies observed by 7Li NMR, yielding low temperature Li+ transport in highly substituted (x=1 & 1.2) materials that is comparable to best‐in‐class solid‐state electrolytes.
doi_str_mv 10.1002/ange.202409372
format Article
fullrecord <record><control><sourceid>proquest_wiley</sourceid><recordid>TN_cdi_proquest_journals_3099368251</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3099368251</sourcerecordid><originalsourceid>FETCH-LOGICAL-p1182-be85297ae61903c33edb596210a9c31375460aa0e4d0f446f3590fcb7ea57a2d3</originalsourceid><addsrcrecordid>eNo9UL1OwzAQthBIlMLKbIk55WwncTxWVSmVKjqkzJGTXIqrxglOQsnGO_CGPAkpRZ3u5_s53UfIPYMJA-CP2m5xwoH7oITkF2TEAs48IQN5SUYAvu9F3FfX5KZpdgAQcqlGpJzbN20zLNG2tCroqjrQDZY1Ot12DmncDa2prMnorLJ5l7Xmw7Q9TfsjVDtsmgH9Uxoamxbp2uWDwm6pscNOxob_fH1_LvAzlstbclXofYN3_3VMXp_mm9mzt1ovlrPpyqsZi7iXYhRwJTWGTIHIhMA8DVTIGWiVCTa85IegNaCfQ-H7YSECBUWWStSB1DwXY_Jw8q1d9d5h0ya7qnN2OJkIUEqEEQ_YwFIn1sHssU9qZ0rt-oRBcswzOeaZnPNMpi-L-XkSv9hObK8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3099368251</pqid></control><display><type>article</type><title>Enhancement of Low Temperature Superionic Conductivity by Suppression of Li Site Ordering in Li7Si2–xGexS7I</title><source>Access via Wiley Online Library</source><creator>Han, Guopeng ; Daniels, Luke M. ; Vasylenko, Andrij ; Morrison, Kate A. ; Corti, Lucia ; Collins, Chris M. ; Niu, Hongjun ; Chen, Ruiyong ; Roberston, Craig M. ; Blanc, Frédéric ; Dyer, Matthew S. ; Claridge, John B. ; Rosseinsky, Matthew J.</creator><creatorcontrib>Han, Guopeng ; Daniels, Luke M. ; Vasylenko, Andrij ; Morrison, Kate A. ; Corti, Lucia ; Collins, Chris M. ; Niu, Hongjun ; Chen, Ruiyong ; Roberston, Craig M. ; Blanc, Frédéric ; Dyer, Matthew S. ; Claridge, John B. ; Rosseinsky, Matthew J.</creatorcontrib><description>Ge4+ substitution into the recently discovered superionic conductor Li7Si2S7I is demonstrated by synthesis of Li7Si2–xGexS7I, where x≤1.2. The anion packing and tetrahedral silicon location of Li7Si2S7I are retained upon substitution. Single crystal X‐ray diffraction shows that substitution of larger Ge4+ for Si4+ expands the unit cell volume and further increases Li+ site disorder, such that Li7Si0.88Ge1.12S7I has one Li+ site more (sixteen in total) than Li7Si2S7I. The ionic conductivity of Li7Si0.8Ge1.2S7I (x=1.2) at 303 K is 1.02(3)×10−2 S cm−1 with low activation energies for Li+ transport demonstrated over a wide temperature range by AC impedance and 7Li NMR spectroscopy. All sixteen Li+ sites remain occupied to temperatures as low as 30 K in Li7Si0.88Ge1.12S7I as a result of the structural expansion. This differs from Li7Si2S7I, where the partial Li+ site ordering observed below room temperature reduces the ionic conductivity. The suppression of Li+ site depopulation by Ge4+ substitution retains the high mobility to temperatures as low as 200 K, yielding low temperature performance comparable with state‐of‐the‐art Li+ ion conducting materials. Isovalent substitution of Ge4+ for Si4+ in Li7Si2–xGexS7I is observed for x≤1.2. Control of unit cell volume via this substitution enhances Li+ site disorder beyond Li7Si2S7I. This extensive disorder is stabilised to 30 K with very low activation energies observed by 7Li NMR, yielding low temperature Li+ transport in highly substituted (x=1 &amp; 1.2) materials that is comparable to best‐in‐class solid‐state electrolytes.</description><identifier>ISSN: 0044-8249</identifier><identifier>EISSN: 1521-3757</identifier><identifier>DOI: 10.1002/ange.202409372</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Cell size ; Conduction ; Conductivity ; Ion currents ; Lithium ions ; Low temperature ; Magnetic resonance spectroscopy ; NMR spectroscopy ; Room temperature ; Single crystals ; Substitutes ; Temperature ; Unit cell ; X-ray diffraction</subject><ispartof>Angewandte Chemie, 2024-09, Vol.136 (37), p.n/a</ispartof><rights>2024 The Authors. Angewandte Chemie published by Wiley-VCH GmbH</rights><rights>2024. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-6933-0628 ; 0000-0001-9171-1454 ; 0000-0002-7077-6125 ; 0000-0001-6493-8135 ; 0000-0002-4923-3003 ; 0000-0002-5340-248X ; 0000-0002-0101-4426 ; 0000-0003-3861-5396 ; 0000-0002-1910-2483 ; 0000-0003-4849-6714</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fange.202409372$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fange.202409372$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Han, Guopeng</creatorcontrib><creatorcontrib>Daniels, Luke M.</creatorcontrib><creatorcontrib>Vasylenko, Andrij</creatorcontrib><creatorcontrib>Morrison, Kate A.</creatorcontrib><creatorcontrib>Corti, Lucia</creatorcontrib><creatorcontrib>Collins, Chris M.</creatorcontrib><creatorcontrib>Niu, Hongjun</creatorcontrib><creatorcontrib>Chen, Ruiyong</creatorcontrib><creatorcontrib>Roberston, Craig M.</creatorcontrib><creatorcontrib>Blanc, Frédéric</creatorcontrib><creatorcontrib>Dyer, Matthew S.</creatorcontrib><creatorcontrib>Claridge, John B.</creatorcontrib><creatorcontrib>Rosseinsky, Matthew J.</creatorcontrib><title>Enhancement of Low Temperature Superionic Conductivity by Suppression of Li Site Ordering in Li7Si2–xGexS7I</title><title>Angewandte Chemie</title><description>Ge4+ substitution into the recently discovered superionic conductor Li7Si2S7I is demonstrated by synthesis of Li7Si2–xGexS7I, where x≤1.2. The anion packing and tetrahedral silicon location of Li7Si2S7I are retained upon substitution. Single crystal X‐ray diffraction shows that substitution of larger Ge4+ for Si4+ expands the unit cell volume and further increases Li+ site disorder, such that Li7Si0.88Ge1.12S7I has one Li+ site more (sixteen in total) than Li7Si2S7I. The ionic conductivity of Li7Si0.8Ge1.2S7I (x=1.2) at 303 K is 1.02(3)×10−2 S cm−1 with low activation energies for Li+ transport demonstrated over a wide temperature range by AC impedance and 7Li NMR spectroscopy. All sixteen Li+ sites remain occupied to temperatures as low as 30 K in Li7Si0.88Ge1.12S7I as a result of the structural expansion. This differs from Li7Si2S7I, where the partial Li+ site ordering observed below room temperature reduces the ionic conductivity. The suppression of Li+ site depopulation by Ge4+ substitution retains the high mobility to temperatures as low as 200 K, yielding low temperature performance comparable with state‐of‐the‐art Li+ ion conducting materials. Isovalent substitution of Ge4+ for Si4+ in Li7Si2–xGexS7I is observed for x≤1.2. Control of unit cell volume via this substitution enhances Li+ site disorder beyond Li7Si2S7I. This extensive disorder is stabilised to 30 K with very low activation energies observed by 7Li NMR, yielding low temperature Li+ transport in highly substituted (x=1 &amp; 1.2) materials that is comparable to best‐in‐class solid‐state electrolytes.</description><subject>Cell size</subject><subject>Conduction</subject><subject>Conductivity</subject><subject>Ion currents</subject><subject>Lithium ions</subject><subject>Low temperature</subject><subject>Magnetic resonance spectroscopy</subject><subject>NMR spectroscopy</subject><subject>Room temperature</subject><subject>Single crystals</subject><subject>Substitutes</subject><subject>Temperature</subject><subject>Unit cell</subject><subject>X-ray diffraction</subject><issn>0044-8249</issn><issn>1521-3757</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><recordid>eNo9UL1OwzAQthBIlMLKbIk55WwncTxWVSmVKjqkzJGTXIqrxglOQsnGO_CGPAkpRZ3u5_s53UfIPYMJA-CP2m5xwoH7oITkF2TEAs48IQN5SUYAvu9F3FfX5KZpdgAQcqlGpJzbN20zLNG2tCroqjrQDZY1Ot12DmncDa2prMnorLJ5l7Xmw7Q9TfsjVDtsmgH9Uxoamxbp2uWDwm6pscNOxob_fH1_LvAzlstbclXofYN3_3VMXp_mm9mzt1ovlrPpyqsZi7iXYhRwJTWGTIHIhMA8DVTIGWiVCTa85IegNaCfQ-H7YSECBUWWStSB1DwXY_Jw8q1d9d5h0ya7qnN2OJkIUEqEEQ_YwFIn1sHssU9qZ0rt-oRBcswzOeaZnPNMpi-L-XkSv9hObK8</recordid><startdate>20240909</startdate><enddate>20240909</enddate><creator>Han, Guopeng</creator><creator>Daniels, Luke M.</creator><creator>Vasylenko, Andrij</creator><creator>Morrison, Kate A.</creator><creator>Corti, Lucia</creator><creator>Collins, Chris M.</creator><creator>Niu, Hongjun</creator><creator>Chen, Ruiyong</creator><creator>Roberston, Craig M.</creator><creator>Blanc, Frédéric</creator><creator>Dyer, Matthew S.</creator><creator>Claridge, John B.</creator><creator>Rosseinsky, Matthew J.</creator><general>Wiley Subscription Services, Inc</general><scope>24P</scope><scope>WIN</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-6933-0628</orcidid><orcidid>https://orcid.org/0000-0001-9171-1454</orcidid><orcidid>https://orcid.org/0000-0002-7077-6125</orcidid><orcidid>https://orcid.org/0000-0001-6493-8135</orcidid><orcidid>https://orcid.org/0000-0002-4923-3003</orcidid><orcidid>https://orcid.org/0000-0002-5340-248X</orcidid><orcidid>https://orcid.org/0000-0002-0101-4426</orcidid><orcidid>https://orcid.org/0000-0003-3861-5396</orcidid><orcidid>https://orcid.org/0000-0002-1910-2483</orcidid><orcidid>https://orcid.org/0000-0003-4849-6714</orcidid></search><sort><creationdate>20240909</creationdate><title>Enhancement of Low Temperature Superionic Conductivity by Suppression of Li Site Ordering in Li7Si2–xGexS7I</title><author>Han, Guopeng ; Daniels, Luke M. ; Vasylenko, Andrij ; Morrison, Kate A. ; Corti, Lucia ; Collins, Chris M. ; Niu, Hongjun ; Chen, Ruiyong ; Roberston, Craig M. ; Blanc, Frédéric ; Dyer, Matthew S. ; Claridge, John B. ; Rosseinsky, Matthew J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p1182-be85297ae61903c33edb596210a9c31375460aa0e4d0f446f3590fcb7ea57a2d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Cell size</topic><topic>Conduction</topic><topic>Conductivity</topic><topic>Ion currents</topic><topic>Lithium ions</topic><topic>Low temperature</topic><topic>Magnetic resonance spectroscopy</topic><topic>NMR spectroscopy</topic><topic>Room temperature</topic><topic>Single crystals</topic><topic>Substitutes</topic><topic>Temperature</topic><topic>Unit cell</topic><topic>X-ray diffraction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Han, Guopeng</creatorcontrib><creatorcontrib>Daniels, Luke M.</creatorcontrib><creatorcontrib>Vasylenko, Andrij</creatorcontrib><creatorcontrib>Morrison, Kate A.</creatorcontrib><creatorcontrib>Corti, Lucia</creatorcontrib><creatorcontrib>Collins, Chris M.</creatorcontrib><creatorcontrib>Niu, Hongjun</creatorcontrib><creatorcontrib>Chen, Ruiyong</creatorcontrib><creatorcontrib>Roberston, Craig M.</creatorcontrib><creatorcontrib>Blanc, Frédéric</creatorcontrib><creatorcontrib>Dyer, Matthew S.</creatorcontrib><creatorcontrib>Claridge, John B.</creatorcontrib><creatorcontrib>Rosseinsky, Matthew J.</creatorcontrib><collection>Wiley Online Library (Open Access Collection)</collection><collection>Wiley Online Library (Open Access Collection)</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Angewandte Chemie</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Han, Guopeng</au><au>Daniels, Luke M.</au><au>Vasylenko, Andrij</au><au>Morrison, Kate A.</au><au>Corti, Lucia</au><au>Collins, Chris M.</au><au>Niu, Hongjun</au><au>Chen, Ruiyong</au><au>Roberston, Craig M.</au><au>Blanc, Frédéric</au><au>Dyer, Matthew S.</au><au>Claridge, John B.</au><au>Rosseinsky, Matthew J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Enhancement of Low Temperature Superionic Conductivity by Suppression of Li Site Ordering in Li7Si2–xGexS7I</atitle><jtitle>Angewandte Chemie</jtitle><date>2024-09-09</date><risdate>2024</risdate><volume>136</volume><issue>37</issue><epage>n/a</epage><issn>0044-8249</issn><eissn>1521-3757</eissn><abstract>Ge4+ substitution into the recently discovered superionic conductor Li7Si2S7I is demonstrated by synthesis of Li7Si2–xGexS7I, where x≤1.2. The anion packing and tetrahedral silicon location of Li7Si2S7I are retained upon substitution. Single crystal X‐ray diffraction shows that substitution of larger Ge4+ for Si4+ expands the unit cell volume and further increases Li+ site disorder, such that Li7Si0.88Ge1.12S7I has one Li+ site more (sixteen in total) than Li7Si2S7I. The ionic conductivity of Li7Si0.8Ge1.2S7I (x=1.2) at 303 K is 1.02(3)×10−2 S cm−1 with low activation energies for Li+ transport demonstrated over a wide temperature range by AC impedance and 7Li NMR spectroscopy. All sixteen Li+ sites remain occupied to temperatures as low as 30 K in Li7Si0.88Ge1.12S7I as a result of the structural expansion. This differs from Li7Si2S7I, where the partial Li+ site ordering observed below room temperature reduces the ionic conductivity. The suppression of Li+ site depopulation by Ge4+ substitution retains the high mobility to temperatures as low as 200 K, yielding low temperature performance comparable with state‐of‐the‐art Li+ ion conducting materials. Isovalent substitution of Ge4+ for Si4+ in Li7Si2–xGexS7I is observed for x≤1.2. Control of unit cell volume via this substitution enhances Li+ site disorder beyond Li7Si2S7I. This extensive disorder is stabilised to 30 K with very low activation energies observed by 7Li NMR, yielding low temperature Li+ transport in highly substituted (x=1 &amp; 1.2) materials that is comparable to best‐in‐class solid‐state electrolytes.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/ange.202409372</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-6933-0628</orcidid><orcidid>https://orcid.org/0000-0001-9171-1454</orcidid><orcidid>https://orcid.org/0000-0002-7077-6125</orcidid><orcidid>https://orcid.org/0000-0001-6493-8135</orcidid><orcidid>https://orcid.org/0000-0002-4923-3003</orcidid><orcidid>https://orcid.org/0000-0002-5340-248X</orcidid><orcidid>https://orcid.org/0000-0002-0101-4426</orcidid><orcidid>https://orcid.org/0000-0003-3861-5396</orcidid><orcidid>https://orcid.org/0000-0002-1910-2483</orcidid><orcidid>https://orcid.org/0000-0003-4849-6714</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0044-8249
ispartof Angewandte Chemie, 2024-09, Vol.136 (37), p.n/a
issn 0044-8249
1521-3757
language eng
recordid cdi_proquest_journals_3099368251
source Access via Wiley Online Library
subjects Cell size
Conduction
Conductivity
Ion currents
Lithium ions
Low temperature
Magnetic resonance spectroscopy
NMR spectroscopy
Room temperature
Single crystals
Substitutes
Temperature
Unit cell
X-ray diffraction
title Enhancement of Low Temperature Superionic Conductivity by Suppression of Li Site Ordering in Li7Si2–xGexS7I
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T14%3A55%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_wiley&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Enhancement%20of%20Low%20Temperature%20Superionic%20Conductivity%20by%20Suppression%20of%20Li%20Site%20Ordering%20in%20Li7Si2%E2%80%93xGexS7I&rft.jtitle=Angewandte%20Chemie&rft.au=Han,%20Guopeng&rft.date=2024-09-09&rft.volume=136&rft.issue=37&rft.epage=n/a&rft.issn=0044-8249&rft.eissn=1521-3757&rft_id=info:doi/10.1002/ange.202409372&rft_dat=%3Cproquest_wiley%3E3099368251%3C/proquest_wiley%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3099368251&rft_id=info:pmid/&rfr_iscdi=true