EMA beamline at Sirius: A versatile platform to probe glass and glass ceramics under extreme thermodynamic conditions

Glass and glass ceramics are very functional materials, albeit their structural complexity. Their relevance ranges from fundamental science problems in the fields of physics, chemistry, and geoscience, to applications in health areas, engineering, or technological matters that require high performan...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of applied glass science 2024-10, Vol.15 (4), p.331-341
Hauptverfasser: Pena, Rafaella Bartz, da Silveira, Rafael Abel, Hippler, Gisele, Evaristo, Leonardo de Lima, Corrêa, Lucas Eduardo, do Carmo, Danusa, Souza‐Neto, Narcizo Marques, Pereira, Altair Soria, Kaneko, Ulisses Ferreira, Buchner, Silvio, dos Reis, Ricardo Donizeth
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Glass and glass ceramics are very functional materials, albeit their structural complexity. Their relevance ranges from fundamental science problems in the fields of physics, chemistry, and geoscience, to applications in health areas, engineering, or technological matters that require high performance. Enhancing our understanding of these materials' performance and refining sample preparation methods remains paramount in this field. Synchrotron facilities offer a suite of powerful techniques for the detailed characterization of glasses and glass ceramics. These methods provide valuable insights into their atomic and molecular structure, phase transformations, mechanical behavior, and thermal properties, ultimately contributing to the development of improved materials for a wide range of applications. In‐depth investigations conducted under extreme conditions of pressure and temperature have yielded pivotal insights into densification mechanisms, phase transitions, crystallization kinetics, and their consequential macroscopic properties. The emergence of fourth‐generation synchrotrons brings in a wave of novel experimental possibilities that may exert a profound influence on this field in the coming decade. In this study, we unveil a selection of the remarkable capabilities now accessible to researchers at the Brazilian Synchrotron Light Source—Sirius, within the realm of extreme methods of analysis (EMA) beamline for investigating vitreous systems under extreme conditions.
ISSN:2041-1286
2041-1294
DOI:10.1111/ijag.16676