Modeling more software performance antipatterns in cyber-physical systems

The design of cyber-physical systems (CPS) is challenging due to the heterogeneity of software and hardware components that operate in uncertain environments (e.g., fluctuating workloads), hence they are prone to performance issues. Software performance antipatterns could be a key means to tackle th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Software and systems modeling 2024-08, Vol.23 (4), p.1003-1023
Hauptverfasser: Pinciroli, Riccardo, Smith, Connie U., Trubiani, Catia
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1023
container_issue 4
container_start_page 1003
container_title Software and systems modeling
container_volume 23
creator Pinciroli, Riccardo
Smith, Connie U.
Trubiani, Catia
description The design of cyber-physical systems (CPS) is challenging due to the heterogeneity of software and hardware components that operate in uncertain environments (e.g., fluctuating workloads), hence they are prone to performance issues. Software performance antipatterns could be a key means to tackle this challenge since they recognize design problems that may lead to unacceptable system performance. This manuscript focuses on modeling and analyzing a variegate set of software performance antipatterns with the goal of quantifying their performance impact on CPS. Starting from the specification of eight software performance antipatterns, we build a baseline queuing network performance model that is properly extended to account for the corresponding bad practices. The approach is applied to a CPS consisting of a network of sensors and experimental results show that performance degradation can be traced back to software performance antipatterns. Sensitivity analysis investigates the peculiar characteristics of antipatterns, such as the frequency of checking the status of resources, that provides quantitative information to software designers to help them identify potential performance problems and their root causes. Quantifying the performance impact of antipatterns on CPS paves the way for future work enabling the automated refactoring of systems to remove these bad practices.
doi_str_mv 10.1007/s10270-023-01137-x
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3099335230</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3099335230</sourcerecordid><originalsourceid>FETCH-LOGICAL-c314t-f6d6dfc226872cf3d3554510668e407ef5beef5b6c786f6b6b41aa6bd8118ef93</originalsourceid><addsrcrecordid>eNp9kM1LxDAQxYMouKz7D3gqeI7mo522R1n8WFjxoueQppO10qY1yeL2v7drRW9eZt7Ae2_gR8glZ9ecsfwmcCZyRpmQlHEuc3o4IQsOvKTTkZ7-aoBzsgqhqRhLRVmmAAuyeeprbBu3S7reYxJ6Gz_1JAb0tveddgYT7WIz6BjRu5A0LjFjhZ4Ob2NojG6TMIaIXbggZ1a3AVc_e0le7-9e1o90-_ywWd9uqZE8jdRCDbU1QkCRC2NlLbMszTgDKDBlOdqswuMAkxdgoYIq5VpDVRecF2hLuSRXc-_g-489hqje-71300slWVlKmQnJJpeYXcb3IXi0avBNp_2oOFNHamqmpiZq6puaOkwhOYfCZHY79H_V_6S-AF2bcT8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3099335230</pqid></control><display><type>article</type><title>Modeling more software performance antipatterns in cyber-physical systems</title><source>SpringerLink Journals</source><creator>Pinciroli, Riccardo ; Smith, Connie U. ; Trubiani, Catia</creator><creatorcontrib>Pinciroli, Riccardo ; Smith, Connie U. ; Trubiani, Catia</creatorcontrib><description>The design of cyber-physical systems (CPS) is challenging due to the heterogeneity of software and hardware components that operate in uncertain environments (e.g., fluctuating workloads), hence they are prone to performance issues. Software performance antipatterns could be a key means to tackle this challenge since they recognize design problems that may lead to unacceptable system performance. This manuscript focuses on modeling and analyzing a variegate set of software performance antipatterns with the goal of quantifying their performance impact on CPS. Starting from the specification of eight software performance antipatterns, we build a baseline queuing network performance model that is properly extended to account for the corresponding bad practices. The approach is applied to a CPS consisting of a network of sensors and experimental results show that performance degradation can be traced back to software performance antipatterns. Sensitivity analysis investigates the peculiar characteristics of antipatterns, such as the frequency of checking the status of resources, that provides quantitative information to software designers to help them identify potential performance problems and their root causes. Quantifying the performance impact of antipatterns on CPS paves the way for future work enabling the automated refactoring of systems to remove these bad practices.</description><identifier>ISSN: 1619-1366</identifier><identifier>EISSN: 1619-1374</identifier><identifier>DOI: 10.1007/s10270-023-01137-x</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Compilers ; Computer Science ; Cyber-physical systems ; Design ; Heterogeneity ; Impact analysis ; Information Systems Applications (incl.Internet) ; Interpreters ; IT in Business ; Modelling ; Performance degradation ; Programming Languages ; Programming Techniques ; Queueing ; Regular Paper ; Sensitivity analysis ; Software ; Software Engineering ; Software Engineering/Programming and Operating Systems</subject><ispartof>Software and systems modeling, 2024-08, Vol.23 (4), p.1003-1023</ispartof><rights>The Author(s) 2023</rights><rights>The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c314t-f6d6dfc226872cf3d3554510668e407ef5beef5b6c786f6b6b41aa6bd8118ef93</cites><orcidid>0000-0002-7675-6942 ; 0000-0003-3375-7256</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10270-023-01137-x$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10270-023-01137-x$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51297</link.rule.ids></links><search><creatorcontrib>Pinciroli, Riccardo</creatorcontrib><creatorcontrib>Smith, Connie U.</creatorcontrib><creatorcontrib>Trubiani, Catia</creatorcontrib><title>Modeling more software performance antipatterns in cyber-physical systems</title><title>Software and systems modeling</title><addtitle>Softw Syst Model</addtitle><description>The design of cyber-physical systems (CPS) is challenging due to the heterogeneity of software and hardware components that operate in uncertain environments (e.g., fluctuating workloads), hence they are prone to performance issues. Software performance antipatterns could be a key means to tackle this challenge since they recognize design problems that may lead to unacceptable system performance. This manuscript focuses on modeling and analyzing a variegate set of software performance antipatterns with the goal of quantifying their performance impact on CPS. Starting from the specification of eight software performance antipatterns, we build a baseline queuing network performance model that is properly extended to account for the corresponding bad practices. The approach is applied to a CPS consisting of a network of sensors and experimental results show that performance degradation can be traced back to software performance antipatterns. Sensitivity analysis investigates the peculiar characteristics of antipatterns, such as the frequency of checking the status of resources, that provides quantitative information to software designers to help them identify potential performance problems and their root causes. Quantifying the performance impact of antipatterns on CPS paves the way for future work enabling the automated refactoring of systems to remove these bad practices.</description><subject>Compilers</subject><subject>Computer Science</subject><subject>Cyber-physical systems</subject><subject>Design</subject><subject>Heterogeneity</subject><subject>Impact analysis</subject><subject>Information Systems Applications (incl.Internet)</subject><subject>Interpreters</subject><subject>IT in Business</subject><subject>Modelling</subject><subject>Performance degradation</subject><subject>Programming Languages</subject><subject>Programming Techniques</subject><subject>Queueing</subject><subject>Regular Paper</subject><subject>Sensitivity analysis</subject><subject>Software</subject><subject>Software Engineering</subject><subject>Software Engineering/Programming and Operating Systems</subject><issn>1619-1366</issn><issn>1619-1374</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><recordid>eNp9kM1LxDAQxYMouKz7D3gqeI7mo522R1n8WFjxoueQppO10qY1yeL2v7drRW9eZt7Ae2_gR8glZ9ecsfwmcCZyRpmQlHEuc3o4IQsOvKTTkZ7-aoBzsgqhqRhLRVmmAAuyeeprbBu3S7reYxJ6Gz_1JAb0tveddgYT7WIz6BjRu5A0LjFjhZ4Ob2NojG6TMIaIXbggZ1a3AVc_e0le7-9e1o90-_ywWd9uqZE8jdRCDbU1QkCRC2NlLbMszTgDKDBlOdqswuMAkxdgoYIq5VpDVRecF2hLuSRXc-_g-489hqje-71300slWVlKmQnJJpeYXcb3IXi0avBNp_2oOFNHamqmpiZq6puaOkwhOYfCZHY79H_V_6S-AF2bcT8</recordid><startdate>20240801</startdate><enddate>20240801</enddate><creator>Pinciroli, Riccardo</creator><creator>Smith, Connie U.</creator><creator>Trubiani, Catia</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-7675-6942</orcidid><orcidid>https://orcid.org/0000-0003-3375-7256</orcidid></search><sort><creationdate>20240801</creationdate><title>Modeling more software performance antipatterns in cyber-physical systems</title><author>Pinciroli, Riccardo ; Smith, Connie U. ; Trubiani, Catia</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c314t-f6d6dfc226872cf3d3554510668e407ef5beef5b6c786f6b6b41aa6bd8118ef93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Compilers</topic><topic>Computer Science</topic><topic>Cyber-physical systems</topic><topic>Design</topic><topic>Heterogeneity</topic><topic>Impact analysis</topic><topic>Information Systems Applications (incl.Internet)</topic><topic>Interpreters</topic><topic>IT in Business</topic><topic>Modelling</topic><topic>Performance degradation</topic><topic>Programming Languages</topic><topic>Programming Techniques</topic><topic>Queueing</topic><topic>Regular Paper</topic><topic>Sensitivity analysis</topic><topic>Software</topic><topic>Software Engineering</topic><topic>Software Engineering/Programming and Operating Systems</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pinciroli, Riccardo</creatorcontrib><creatorcontrib>Smith, Connie U.</creatorcontrib><creatorcontrib>Trubiani, Catia</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Software and systems modeling</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pinciroli, Riccardo</au><au>Smith, Connie U.</au><au>Trubiani, Catia</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Modeling more software performance antipatterns in cyber-physical systems</atitle><jtitle>Software and systems modeling</jtitle><stitle>Softw Syst Model</stitle><date>2024-08-01</date><risdate>2024</risdate><volume>23</volume><issue>4</issue><spage>1003</spage><epage>1023</epage><pages>1003-1023</pages><issn>1619-1366</issn><eissn>1619-1374</eissn><abstract>The design of cyber-physical systems (CPS) is challenging due to the heterogeneity of software and hardware components that operate in uncertain environments (e.g., fluctuating workloads), hence they are prone to performance issues. Software performance antipatterns could be a key means to tackle this challenge since they recognize design problems that may lead to unacceptable system performance. This manuscript focuses on modeling and analyzing a variegate set of software performance antipatterns with the goal of quantifying their performance impact on CPS. Starting from the specification of eight software performance antipatterns, we build a baseline queuing network performance model that is properly extended to account for the corresponding bad practices. The approach is applied to a CPS consisting of a network of sensors and experimental results show that performance degradation can be traced back to software performance antipatterns. Sensitivity analysis investigates the peculiar characteristics of antipatterns, such as the frequency of checking the status of resources, that provides quantitative information to software designers to help them identify potential performance problems and their root causes. Quantifying the performance impact of antipatterns on CPS paves the way for future work enabling the automated refactoring of systems to remove these bad practices.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s10270-023-01137-x</doi><tpages>21</tpages><orcidid>https://orcid.org/0000-0002-7675-6942</orcidid><orcidid>https://orcid.org/0000-0003-3375-7256</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1619-1366
ispartof Software and systems modeling, 2024-08, Vol.23 (4), p.1003-1023
issn 1619-1366
1619-1374
language eng
recordid cdi_proquest_journals_3099335230
source SpringerLink Journals
subjects Compilers
Computer Science
Cyber-physical systems
Design
Heterogeneity
Impact analysis
Information Systems Applications (incl.Internet)
Interpreters
IT in Business
Modelling
Performance degradation
Programming Languages
Programming Techniques
Queueing
Regular Paper
Sensitivity analysis
Software
Software Engineering
Software Engineering/Programming and Operating Systems
title Modeling more software performance antipatterns in cyber-physical systems
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T00%3A28%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Modeling%20more%20software%20performance%20antipatterns%20in%20cyber-physical%20systems&rft.jtitle=Software%20and%20systems%20modeling&rft.au=Pinciroli,%20Riccardo&rft.date=2024-08-01&rft.volume=23&rft.issue=4&rft.spage=1003&rft.epage=1023&rft.pages=1003-1023&rft.issn=1619-1366&rft.eissn=1619-1374&rft_id=info:doi/10.1007/s10270-023-01137-x&rft_dat=%3Cproquest_cross%3E3099335230%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3099335230&rft_id=info:pmid/&rfr_iscdi=true