Approach for Identifying the Impact of Local Wind and Spatial Conditions on Wind Turbine Blade Geometry

Efficient wind turbine blade design is crucial, yet current models often fail to fully account for variations in wind inflow due to terrain differences, particularly wind shear. This article aims to verify the theoretical method of designing the geometry of wind turbine blades. The proposed model, w...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of energy research 2024-01, Vol.2024 (1)
Hauptverfasser: Woźniak, Agnieszka, Kluczek, Aldona, Nycz, Paweł D.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page
container_title International journal of energy research
container_volume 2024
creator Woźniak, Agnieszka
Kluczek, Aldona
Nycz, Paweł D.
description Efficient wind turbine blade design is crucial, yet current models often fail to fully account for variations in wind inflow due to terrain differences, particularly wind shear. This article aims to verify the theoretical method of designing the geometry of wind turbine blades. The proposed model, which combines the BEM method and the vortex method, was developed to consider the nonuniform inflow caused by wind shear. Model verification employed an explanatory sequential process focusing on two perspectives. First, it examines the correlation between the theoretical terrain roughness coefficient and the blade geometry. Second, it analyzes the relationship between the type of terrain (terrain roughness) and the design of wind turbine blades in two real locations in southeastern Poland. The results highlight the importance of accurate assessment of wind speed and spatial conditions to optimize the use of local wind resources in electricity production. It is suggested that adapting wind turbine blade geometry to the plant’s location will improve resource utilization, providing insight for energy decision‐makers. The findings highlight the importance of considering wind shear when designing blades for varying terrain. The methodology is presented on the example of a wind power plant, and at the end of the article, potential directions of future research in this field are outlined.
doi_str_mv 10.1155/2024/7310206
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3099329031</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3099329031</sourcerecordid><originalsourceid>FETCH-LOGICAL-c188t-ef5007ec456a512600b087641c1f53ff0d8dfafa6ca3e45f3ad7b7bc1f9ac4fb3</originalsourceid><addsrcrecordid>eNotkE9LAzEQxYMoWKs3P0DAq2snm81m91iL1kLBgxV7W7L506a0yZqkh357U-pheDDvMcP7IfRI4IUQxiYllNWEUwIl1FdoRKBtC0Kq9TUaAa1p0QJf36K7GHcA2SN8hDbTYQheyC02PuCF0i5Zc7Jug9NW48VhEDJhb_DSS7HHP9YpLPJ8DSLZvJh5p2yy3kXs3cVeHUNvncave6E0nmt_0Cmc7tGNEfuoH_51jL7f31azj2L5OV_MpstCkqZJhTYMgGtZsVowUtYAPTS8rogkhlFjQDXKCCNqKaiumKFC8Z732W2FrExPx-jpcje3-j3qmLqdPwaXX3Y0V6ZlC5Tk1PMlJYOPMWjTDcEeRDh1BLozyu6MsvtHSf8Arnhmgw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3099329031</pqid></control><display><type>article</type><title>Approach for Identifying the Impact of Local Wind and Spatial Conditions on Wind Turbine Blade Geometry</title><source>Wiley Online Library Open Access</source><source>DOAJ Directory of Open Access Journals</source><source>Alma/SFX Local Collection</source><source>ProQuest Central</source><creator>Woźniak, Agnieszka ; Kluczek, Aldona ; Nycz, Paweł D.</creator><contributor>Muhammad Ahsan Saeed</contributor><creatorcontrib>Woźniak, Agnieszka ; Kluczek, Aldona ; Nycz, Paweł D. ; Muhammad Ahsan Saeed</creatorcontrib><description>Efficient wind turbine blade design is crucial, yet current models often fail to fully account for variations in wind inflow due to terrain differences, particularly wind shear. This article aims to verify the theoretical method of designing the geometry of wind turbine blades. The proposed model, which combines the BEM method and the vortex method, was developed to consider the nonuniform inflow caused by wind shear. Model verification employed an explanatory sequential process focusing on two perspectives. First, it examines the correlation between the theoretical terrain roughness coefficient and the blade geometry. Second, it analyzes the relationship between the type of terrain (terrain roughness) and the design of wind turbine blades in two real locations in southeastern Poland. The results highlight the importance of accurate assessment of wind speed and spatial conditions to optimize the use of local wind resources in electricity production. It is suggested that adapting wind turbine blade geometry to the plant’s location will improve resource utilization, providing insight for energy decision‐makers. The findings highlight the importance of considering wind shear when designing blades for varying terrain. The methodology is presented on the example of a wind power plant, and at the end of the article, potential directions of future research in this field are outlined.</description><identifier>ISSN: 0363-907X</identifier><identifier>EISSN: 1099-114X</identifier><identifier>DOI: 10.1155/2024/7310206</identifier><language>eng</language><publisher>Bognor Regis: Hindawi Limited</publisher><subject>Alternative energy sources ; Bibliographic coupling ; Bibliometrics ; Design optimization ; Electric power generation ; Energy efficiency ; Energy research ; Energy resources ; Geometry ; Inflow ; Keywords ; Literature reviews ; Local winds ; Power plants ; R&amp;D ; Renewable resources ; Research &amp; development ; Research methodology ; Resource utilization ; Roughness ; Roughness coefficient ; Sustainability ; Terrain ; Turbine blades ; Turbine engines ; Turbines ; Wind power ; Wind shear ; Wind speed ; Wind turbines</subject><ispartof>International journal of energy research, 2024-01, Vol.2024 (1)</ispartof><rights>Copyright © 2024 Agnieszka Woźniak et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c188t-ef5007ec456a512600b087641c1f53ff0d8dfafa6ca3e45f3ad7b7bc1f9ac4fb3</cites><orcidid>0000-0002-0156-4604 ; 0000-0001-7390-3882 ; 0000-0002-8711-7898</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/3099329031/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/3099329031?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,860,21367,27901,27902,33721,43781,74045</link.rule.ids></links><search><contributor>Muhammad Ahsan Saeed</contributor><creatorcontrib>Woźniak, Agnieszka</creatorcontrib><creatorcontrib>Kluczek, Aldona</creatorcontrib><creatorcontrib>Nycz, Paweł D.</creatorcontrib><title>Approach for Identifying the Impact of Local Wind and Spatial Conditions on Wind Turbine Blade Geometry</title><title>International journal of energy research</title><description>Efficient wind turbine blade design is crucial, yet current models often fail to fully account for variations in wind inflow due to terrain differences, particularly wind shear. This article aims to verify the theoretical method of designing the geometry of wind turbine blades. The proposed model, which combines the BEM method and the vortex method, was developed to consider the nonuniform inflow caused by wind shear. Model verification employed an explanatory sequential process focusing on two perspectives. First, it examines the correlation between the theoretical terrain roughness coefficient and the blade geometry. Second, it analyzes the relationship between the type of terrain (terrain roughness) and the design of wind turbine blades in two real locations in southeastern Poland. The results highlight the importance of accurate assessment of wind speed and spatial conditions to optimize the use of local wind resources in electricity production. It is suggested that adapting wind turbine blade geometry to the plant’s location will improve resource utilization, providing insight for energy decision‐makers. The findings highlight the importance of considering wind shear when designing blades for varying terrain. The methodology is presented on the example of a wind power plant, and at the end of the article, potential directions of future research in this field are outlined.</description><subject>Alternative energy sources</subject><subject>Bibliographic coupling</subject><subject>Bibliometrics</subject><subject>Design optimization</subject><subject>Electric power generation</subject><subject>Energy efficiency</subject><subject>Energy research</subject><subject>Energy resources</subject><subject>Geometry</subject><subject>Inflow</subject><subject>Keywords</subject><subject>Literature reviews</subject><subject>Local winds</subject><subject>Power plants</subject><subject>R&amp;D</subject><subject>Renewable resources</subject><subject>Research &amp; development</subject><subject>Research methodology</subject><subject>Resource utilization</subject><subject>Roughness</subject><subject>Roughness coefficient</subject><subject>Sustainability</subject><subject>Terrain</subject><subject>Turbine blades</subject><subject>Turbine engines</subject><subject>Turbines</subject><subject>Wind power</subject><subject>Wind shear</subject><subject>Wind speed</subject><subject>Wind turbines</subject><issn>0363-907X</issn><issn>1099-114X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNotkE9LAzEQxYMoWKs3P0DAq2snm81m91iL1kLBgxV7W7L506a0yZqkh357U-pheDDvMcP7IfRI4IUQxiYllNWEUwIl1FdoRKBtC0Kq9TUaAa1p0QJf36K7GHcA2SN8hDbTYQheyC02PuCF0i5Zc7Jug9NW48VhEDJhb_DSS7HHP9YpLPJ8DSLZvJh5p2yy3kXs3cVeHUNvncave6E0nmt_0Cmc7tGNEfuoH_51jL7f31azj2L5OV_MpstCkqZJhTYMgGtZsVowUtYAPTS8rogkhlFjQDXKCCNqKaiumKFC8Z732W2FrExPx-jpcje3-j3qmLqdPwaXX3Y0V6ZlC5Tk1PMlJYOPMWjTDcEeRDh1BLozyu6MsvtHSf8Arnhmgw</recordid><startdate>20240101</startdate><enddate>20240101</enddate><creator>Woźniak, Agnieszka</creator><creator>Kluczek, Aldona</creator><creator>Nycz, Paweł D.</creator><general>Hindawi Limited</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7ST</scope><scope>7TB</scope><scope>7TN</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>COVID</scope><scope>DWQXO</scope><scope>F1W</scope><scope>F28</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KR7</scope><scope>L.G</scope><scope>L6V</scope><scope>L7M</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0002-0156-4604</orcidid><orcidid>https://orcid.org/0000-0001-7390-3882</orcidid><orcidid>https://orcid.org/0000-0002-8711-7898</orcidid></search><sort><creationdate>20240101</creationdate><title>Approach for Identifying the Impact of Local Wind and Spatial Conditions on Wind Turbine Blade Geometry</title><author>Woźniak, Agnieszka ; Kluczek, Aldona ; Nycz, Paweł D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c188t-ef5007ec456a512600b087641c1f53ff0d8dfafa6ca3e45f3ad7b7bc1f9ac4fb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Alternative energy sources</topic><topic>Bibliographic coupling</topic><topic>Bibliometrics</topic><topic>Design optimization</topic><topic>Electric power generation</topic><topic>Energy efficiency</topic><topic>Energy research</topic><topic>Energy resources</topic><topic>Geometry</topic><topic>Inflow</topic><topic>Keywords</topic><topic>Literature reviews</topic><topic>Local winds</topic><topic>Power plants</topic><topic>R&amp;D</topic><topic>Renewable resources</topic><topic>Research &amp; development</topic><topic>Research methodology</topic><topic>Resource utilization</topic><topic>Roughness</topic><topic>Roughness coefficient</topic><topic>Sustainability</topic><topic>Terrain</topic><topic>Turbine blades</topic><topic>Turbine engines</topic><topic>Turbines</topic><topic>Wind power</topic><topic>Wind shear</topic><topic>Wind speed</topic><topic>Wind turbines</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Woźniak, Agnieszka</creatorcontrib><creatorcontrib>Kluczek, Aldona</creatorcontrib><creatorcontrib>Nycz, Paweł D.</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Environment Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>Coronavirus Research Database</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Environment Abstracts</collection><jtitle>International journal of energy research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Woźniak, Agnieszka</au><au>Kluczek, Aldona</au><au>Nycz, Paweł D.</au><au>Muhammad Ahsan Saeed</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Approach for Identifying the Impact of Local Wind and Spatial Conditions on Wind Turbine Blade Geometry</atitle><jtitle>International journal of energy research</jtitle><date>2024-01-01</date><risdate>2024</risdate><volume>2024</volume><issue>1</issue><issn>0363-907X</issn><eissn>1099-114X</eissn><abstract>Efficient wind turbine blade design is crucial, yet current models often fail to fully account for variations in wind inflow due to terrain differences, particularly wind shear. This article aims to verify the theoretical method of designing the geometry of wind turbine blades. The proposed model, which combines the BEM method and the vortex method, was developed to consider the nonuniform inflow caused by wind shear. Model verification employed an explanatory sequential process focusing on two perspectives. First, it examines the correlation between the theoretical terrain roughness coefficient and the blade geometry. Second, it analyzes the relationship between the type of terrain (terrain roughness) and the design of wind turbine blades in two real locations in southeastern Poland. The results highlight the importance of accurate assessment of wind speed and spatial conditions to optimize the use of local wind resources in electricity production. It is suggested that adapting wind turbine blade geometry to the plant’s location will improve resource utilization, providing insight for energy decision‐makers. The findings highlight the importance of considering wind shear when designing blades for varying terrain. The methodology is presented on the example of a wind power plant, and at the end of the article, potential directions of future research in this field are outlined.</abstract><cop>Bognor Regis</cop><pub>Hindawi Limited</pub><doi>10.1155/2024/7310206</doi><orcidid>https://orcid.org/0000-0002-0156-4604</orcidid><orcidid>https://orcid.org/0000-0001-7390-3882</orcidid><orcidid>https://orcid.org/0000-0002-8711-7898</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0363-907X
ispartof International journal of energy research, 2024-01, Vol.2024 (1)
issn 0363-907X
1099-114X
language eng
recordid cdi_proquest_journals_3099329031
source Wiley Online Library Open Access; DOAJ Directory of Open Access Journals; Alma/SFX Local Collection; ProQuest Central
subjects Alternative energy sources
Bibliographic coupling
Bibliometrics
Design optimization
Electric power generation
Energy efficiency
Energy research
Energy resources
Geometry
Inflow
Keywords
Literature reviews
Local winds
Power plants
R&D
Renewable resources
Research & development
Research methodology
Resource utilization
Roughness
Roughness coefficient
Sustainability
Terrain
Turbine blades
Turbine engines
Turbines
Wind power
Wind shear
Wind speed
Wind turbines
title Approach for Identifying the Impact of Local Wind and Spatial Conditions on Wind Turbine Blade Geometry
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T16%3A54%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Approach%20for%20Identifying%20the%20Impact%20of%20Local%20Wind%20and%20Spatial%20Conditions%20on%20Wind%20Turbine%20Blade%20Geometry&rft.jtitle=International%20journal%20of%20energy%20research&rft.au=Wo%C5%BAniak,%20Agnieszka&rft.date=2024-01-01&rft.volume=2024&rft.issue=1&rft.issn=0363-907X&rft.eissn=1099-114X&rft_id=info:doi/10.1155/2024/7310206&rft_dat=%3Cproquest_cross%3E3099329031%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3099329031&rft_id=info:pmid/&rfr_iscdi=true