Low dielectric constant composites using covalent organic framework dispersed terpolyimide
Polyimides are used in various applications, including fuel cells, membranes, and microelectronics, due to their outstanding tensile properties, great thermal stability, low dielectric constant, and chemical inertness. Applications requiring even lower dielectric constants include interlayer dielect...
Gespeichert in:
Veröffentlicht in: | Polymer engineering and science 2024-09, Vol.64 (9), p.4539-4550 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 4550 |
---|---|
container_issue | 9 |
container_start_page | 4539 |
container_title | Polymer engineering and science |
container_volume | 64 |
creator | Purushothaman, Revathi Pandian, C. K. Arvinda |
description | Polyimides are used in various applications, including fuel cells, membranes, and microelectronics, due to their outstanding tensile properties, great thermal stability, low dielectric constant, and chemical inertness. Applications requiring even lower dielectric constants include interlayer dielectrics and tape‐automated bonding. In this study, a covalent organic framework (COF‐1) was synthesized and dispersed in various percentages into a solution of terpoly(amide acid) (TPAA) to produce COF‐1/terpolyimide composites. 3,3′,4,4′‐Oxydiphthalic dianhydride (ODPA), 3,3′,4,4′‐biphenyltetracarboxylicdianhydride (BPDA), and 4,4′‐(hexafluoroisopropylidene)diphthalic anhydride (6FDA) were reacted with 4,4′‐(hexafluoroisopropylidene)bis[(4‐aminophenoxy)benzene] (HFBAPP) or 4,4′‐(hexafluoroisopropylidene) dianiline (6FpDA) to form terpoly(amide acid). In this case, monomers with fluorinated substituents (HFBAPP, 6FpDA, and 6FDA) were utilized to improve free volume. Pores of COF‐1 and gaps between polyimide chains and COF‐1 can be filled with air with a dielectric constant (κ) ~1, lowering the κ value of terpolyimide composites. The κ value of COF‐1/terpolyimide composites decreased as COF‐1 content increased, reaching a minimum of 1.96. Tensile properties decreased slightly with increasing COF‐1 levels. The terpolyimides and their composites were thermally stable up to approximately 520°C. As a result, these polymer composites look promising for use as insulators in microelectronic applications.
Highlights
Terpolyimide is prepared using fluorinated monomers to improve bulk volume.
Incorporated COF‐1 into terpoly(amide acid) to introduce pores/voids and reduce dielectric constant.
Developed COF‐1/terpolyimide composites with a low dielectric constant of 1.96.
Optimized COF‐1/terpolyimide composites for microelectronic applications.
Terpolyimides are prepared using three dianhydrides and two diamines, of which three are fluorinated monomers, so that the bulky fluorinated groups reduce the dielectric constant. COF‐1 was prepared and incorporated into the terpolyimide matrix to further lower the dielectric constant and obtain COF‐1/terpolyimide composites suitable for microelectronic applications. |
doi_str_mv | 10.1002/pen.26867 |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_3099284570</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A813643705</galeid><sourcerecordid>A813643705</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3637-ad0a8969cc994e88abb8a75d7d500b53bd9a078c428310e03b28d760aedda9593</originalsourceid><addsrcrecordid>eNp10ltLHDEUB_AgFbrVPvQbLPRJ6KyZyVySRxG1wtJKLy99CZnkzBg7k4w5Wbf77Y2uoAtbAknI_P65MIeQTzld5JQWpxO4RVHzujkgs7wqeVbUrHxHZpSyImOc8_fkA-IdTZZVYkb-LP16biwMoGOweq69w6hcTJNx8mgj4HyF1vVp4UENkL740CuXaBfUCGsf_qY8ThAQzDxCmPywsaM1cEwOOzUgfHwZj8jvy4tf51-z5fer6_OzZaZZzZpMGaq4qIXWQpTAuWpbrprKNKaitK1Ya4SiDddlwVlOgbK24KapqQJjlKgEOyKft_tOwd-vAKO886vg0pGSUSEKXlYNfVV9eoW0rvMxKD1a1PKM56wuWUOrpLI9qgcHQQ3eQWfT8o5f7PGpGRit3hs42QkkE-Ff7NUKUV7__LFrv7yx7dNvAEwd2v424jayb2sdPGKATk7BjipsZE7lU3HIVBzyuTiSPd3adbrf5v9Q3lx82yYeAa2LudU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3099284570</pqid></control><display><type>article</type><title>Low dielectric constant composites using covalent organic framework dispersed terpolyimide</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Purushothaman, Revathi ; Pandian, C. K. Arvinda</creator><creatorcontrib>Purushothaman, Revathi ; Pandian, C. K. Arvinda</creatorcontrib><description>Polyimides are used in various applications, including fuel cells, membranes, and microelectronics, due to their outstanding tensile properties, great thermal stability, low dielectric constant, and chemical inertness. Applications requiring even lower dielectric constants include interlayer dielectrics and tape‐automated bonding. In this study, a covalent organic framework (COF‐1) was synthesized and dispersed in various percentages into a solution of terpoly(amide acid) (TPAA) to produce COF‐1/terpolyimide composites. 3,3′,4,4′‐Oxydiphthalic dianhydride (ODPA), 3,3′,4,4′‐biphenyltetracarboxylicdianhydride (BPDA), and 4,4′‐(hexafluoroisopropylidene)diphthalic anhydride (6FDA) were reacted with 4,4′‐(hexafluoroisopropylidene)bis[(4‐aminophenoxy)benzene] (HFBAPP) or 4,4′‐(hexafluoroisopropylidene) dianiline (6FpDA) to form terpoly(amide acid). In this case, monomers with fluorinated substituents (HFBAPP, 6FpDA, and 6FDA) were utilized to improve free volume. Pores of COF‐1 and gaps between polyimide chains and COF‐1 can be filled with air with a dielectric constant (κ) ~1, lowering the κ value of terpolyimide composites. The κ value of COF‐1/terpolyimide composites decreased as COF‐1 content increased, reaching a minimum of 1.96. Tensile properties decreased slightly with increasing COF‐1 levels. The terpolyimides and their composites were thermally stable up to approximately 520°C. As a result, these polymer composites look promising for use as insulators in microelectronic applications.
Highlights
Terpolyimide is prepared using fluorinated monomers to improve bulk volume.
Incorporated COF‐1 into terpoly(amide acid) to introduce pores/voids and reduce dielectric constant.
Developed COF‐1/terpolyimide composites with a low dielectric constant of 1.96.
Optimized COF‐1/terpolyimide composites for microelectronic applications.
Terpolyimides are prepared using three dianhydrides and two diamines, of which three are fluorinated monomers, so that the bulky fluorinated groups reduce the dielectric constant. COF‐1 was prepared and incorporated into the terpolyimide matrix to further lower the dielectric constant and obtain COF‐1/terpolyimide composites suitable for microelectronic applications.</description><identifier>ISSN: 0032-3888</identifier><identifier>EISSN: 1548-2634</identifier><identifier>DOI: 10.1002/pen.26867</identifier><language>eng</language><publisher>Hoboken, USA: John Wiley & Sons, Inc</publisher><subject>Benzene ; Chemical bonds ; COF‐1 ; composites ; covalent organic framework ; dielectric constant ; Dielectrics ; Electric properties ; Fluorination ; Fuel cell industry ; Fuel cells ; Insulators ; Interlayers ; Mechanical properties ; microelectronic applications ; Microelectronics ; Monomers ; Permittivity ; Polyimide resins ; Polyimides ; Polymer matrix composites ; Tensile properties ; Thermal stability</subject><ispartof>Polymer engineering and science, 2024-09, Vol.64 (9), p.4539-4550</ispartof><rights>2024 Society of Plastics Engineers.</rights><rights>COPYRIGHT 2024 Society of Plastics Engineers, Inc.</rights><rights>2024 Society of Plastics Engineers</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c3637-ad0a8969cc994e88abb8a75d7d500b53bd9a078c428310e03b28d760aedda9593</cites><orcidid>0000-0003-1075-0561 ; 0000-0002-0039-6389</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fpen.26867$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fpen.26867$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27903,27904,45553,45554</link.rule.ids></links><search><creatorcontrib>Purushothaman, Revathi</creatorcontrib><creatorcontrib>Pandian, C. K. Arvinda</creatorcontrib><title>Low dielectric constant composites using covalent organic framework dispersed terpolyimide</title><title>Polymer engineering and science</title><description>Polyimides are used in various applications, including fuel cells, membranes, and microelectronics, due to their outstanding tensile properties, great thermal stability, low dielectric constant, and chemical inertness. Applications requiring even lower dielectric constants include interlayer dielectrics and tape‐automated bonding. In this study, a covalent organic framework (COF‐1) was synthesized and dispersed in various percentages into a solution of terpoly(amide acid) (TPAA) to produce COF‐1/terpolyimide composites. 3,3′,4,4′‐Oxydiphthalic dianhydride (ODPA), 3,3′,4,4′‐biphenyltetracarboxylicdianhydride (BPDA), and 4,4′‐(hexafluoroisopropylidene)diphthalic anhydride (6FDA) were reacted with 4,4′‐(hexafluoroisopropylidene)bis[(4‐aminophenoxy)benzene] (HFBAPP) or 4,4′‐(hexafluoroisopropylidene) dianiline (6FpDA) to form terpoly(amide acid). In this case, monomers with fluorinated substituents (HFBAPP, 6FpDA, and 6FDA) were utilized to improve free volume. Pores of COF‐1 and gaps between polyimide chains and COF‐1 can be filled with air with a dielectric constant (κ) ~1, lowering the κ value of terpolyimide composites. The κ value of COF‐1/terpolyimide composites decreased as COF‐1 content increased, reaching a minimum of 1.96. Tensile properties decreased slightly with increasing COF‐1 levels. The terpolyimides and their composites were thermally stable up to approximately 520°C. As a result, these polymer composites look promising for use as insulators in microelectronic applications.
Highlights
Terpolyimide is prepared using fluorinated monomers to improve bulk volume.
Incorporated COF‐1 into terpoly(amide acid) to introduce pores/voids and reduce dielectric constant.
Developed COF‐1/terpolyimide composites with a low dielectric constant of 1.96.
Optimized COF‐1/terpolyimide composites for microelectronic applications.
Terpolyimides are prepared using three dianhydrides and two diamines, of which three are fluorinated monomers, so that the bulky fluorinated groups reduce the dielectric constant. COF‐1 was prepared and incorporated into the terpolyimide matrix to further lower the dielectric constant and obtain COF‐1/terpolyimide composites suitable for microelectronic applications.</description><subject>Benzene</subject><subject>Chemical bonds</subject><subject>COF‐1</subject><subject>composites</subject><subject>covalent organic framework</subject><subject>dielectric constant</subject><subject>Dielectrics</subject><subject>Electric properties</subject><subject>Fluorination</subject><subject>Fuel cell industry</subject><subject>Fuel cells</subject><subject>Insulators</subject><subject>Interlayers</subject><subject>Mechanical properties</subject><subject>microelectronic applications</subject><subject>Microelectronics</subject><subject>Monomers</subject><subject>Permittivity</subject><subject>Polyimide resins</subject><subject>Polyimides</subject><subject>Polymer matrix composites</subject><subject>Tensile properties</subject><subject>Thermal stability</subject><issn>0032-3888</issn><issn>1548-2634</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>N95</sourceid><recordid>eNp10ltLHDEUB_AgFbrVPvQbLPRJ6KyZyVySRxG1wtJKLy99CZnkzBg7k4w5Wbf77Y2uoAtbAknI_P65MIeQTzld5JQWpxO4RVHzujkgs7wqeVbUrHxHZpSyImOc8_fkA-IdTZZVYkb-LP16biwMoGOweq69w6hcTJNx8mgj4HyF1vVp4UENkL740CuXaBfUCGsf_qY8ThAQzDxCmPywsaM1cEwOOzUgfHwZj8jvy4tf51-z5fer6_OzZaZZzZpMGaq4qIXWQpTAuWpbrprKNKaitK1Ya4SiDddlwVlOgbK24KapqQJjlKgEOyKft_tOwd-vAKO886vg0pGSUSEKXlYNfVV9eoW0rvMxKD1a1PKM56wuWUOrpLI9qgcHQQ3eQWfT8o5f7PGpGRit3hs42QkkE-Ff7NUKUV7__LFrv7yx7dNvAEwd2v424jayb2sdPGKATk7BjipsZE7lU3HIVBzyuTiSPd3adbrf5v9Q3lx82yYeAa2LudU</recordid><startdate>202409</startdate><enddate>202409</enddate><creator>Purushothaman, Revathi</creator><creator>Pandian, C. K. Arvinda</creator><general>John Wiley & Sons, Inc</general><general>Society of Plastics Engineers, Inc</general><general>Blackwell Publishing Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>N95</scope><scope>XI7</scope><scope>ISR</scope><scope>7SR</scope><scope>8FD</scope><scope>JG9</scope><orcidid>https://orcid.org/0000-0003-1075-0561</orcidid><orcidid>https://orcid.org/0000-0002-0039-6389</orcidid></search><sort><creationdate>202409</creationdate><title>Low dielectric constant composites using covalent organic framework dispersed terpolyimide</title><author>Purushothaman, Revathi ; Pandian, C. K. Arvinda</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3637-ad0a8969cc994e88abb8a75d7d500b53bd9a078c428310e03b28d760aedda9593</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Benzene</topic><topic>Chemical bonds</topic><topic>COF‐1</topic><topic>composites</topic><topic>covalent organic framework</topic><topic>dielectric constant</topic><topic>Dielectrics</topic><topic>Electric properties</topic><topic>Fluorination</topic><topic>Fuel cell industry</topic><topic>Fuel cells</topic><topic>Insulators</topic><topic>Interlayers</topic><topic>Mechanical properties</topic><topic>microelectronic applications</topic><topic>Microelectronics</topic><topic>Monomers</topic><topic>Permittivity</topic><topic>Polyimide resins</topic><topic>Polyimides</topic><topic>Polymer matrix composites</topic><topic>Tensile properties</topic><topic>Thermal stability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Purushothaman, Revathi</creatorcontrib><creatorcontrib>Pandian, C. K. Arvinda</creatorcontrib><collection>CrossRef</collection><collection>Gale Business: Insights</collection><collection>Business Insights: Essentials</collection><collection>Gale In Context: Science</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Polymer engineering and science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Purushothaman, Revathi</au><au>Pandian, C. K. Arvinda</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Low dielectric constant composites using covalent organic framework dispersed terpolyimide</atitle><jtitle>Polymer engineering and science</jtitle><date>2024-09</date><risdate>2024</risdate><volume>64</volume><issue>9</issue><spage>4539</spage><epage>4550</epage><pages>4539-4550</pages><issn>0032-3888</issn><eissn>1548-2634</eissn><abstract>Polyimides are used in various applications, including fuel cells, membranes, and microelectronics, due to their outstanding tensile properties, great thermal stability, low dielectric constant, and chemical inertness. Applications requiring even lower dielectric constants include interlayer dielectrics and tape‐automated bonding. In this study, a covalent organic framework (COF‐1) was synthesized and dispersed in various percentages into a solution of terpoly(amide acid) (TPAA) to produce COF‐1/terpolyimide composites. 3,3′,4,4′‐Oxydiphthalic dianhydride (ODPA), 3,3′,4,4′‐biphenyltetracarboxylicdianhydride (BPDA), and 4,4′‐(hexafluoroisopropylidene)diphthalic anhydride (6FDA) were reacted with 4,4′‐(hexafluoroisopropylidene)bis[(4‐aminophenoxy)benzene] (HFBAPP) or 4,4′‐(hexafluoroisopropylidene) dianiline (6FpDA) to form terpoly(amide acid). In this case, monomers with fluorinated substituents (HFBAPP, 6FpDA, and 6FDA) were utilized to improve free volume. Pores of COF‐1 and gaps between polyimide chains and COF‐1 can be filled with air with a dielectric constant (κ) ~1, lowering the κ value of terpolyimide composites. The κ value of COF‐1/terpolyimide composites decreased as COF‐1 content increased, reaching a minimum of 1.96. Tensile properties decreased slightly with increasing COF‐1 levels. The terpolyimides and their composites were thermally stable up to approximately 520°C. As a result, these polymer composites look promising for use as insulators in microelectronic applications.
Highlights
Terpolyimide is prepared using fluorinated monomers to improve bulk volume.
Incorporated COF‐1 into terpoly(amide acid) to introduce pores/voids and reduce dielectric constant.
Developed COF‐1/terpolyimide composites with a low dielectric constant of 1.96.
Optimized COF‐1/terpolyimide composites for microelectronic applications.
Terpolyimides are prepared using three dianhydrides and two diamines, of which three are fluorinated monomers, so that the bulky fluorinated groups reduce the dielectric constant. COF‐1 was prepared and incorporated into the terpolyimide matrix to further lower the dielectric constant and obtain COF‐1/terpolyimide composites suitable for microelectronic applications.</abstract><cop>Hoboken, USA</cop><pub>John Wiley & Sons, Inc</pub><doi>10.1002/pen.26867</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0003-1075-0561</orcidid><orcidid>https://orcid.org/0000-0002-0039-6389</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0032-3888 |
ispartof | Polymer engineering and science, 2024-09, Vol.64 (9), p.4539-4550 |
issn | 0032-3888 1548-2634 |
language | eng |
recordid | cdi_proquest_journals_3099284570 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | Benzene Chemical bonds COF‐1 composites covalent organic framework dielectric constant Dielectrics Electric properties Fluorination Fuel cell industry Fuel cells Insulators Interlayers Mechanical properties microelectronic applications Microelectronics Monomers Permittivity Polyimide resins Polyimides Polymer matrix composites Tensile properties Thermal stability |
title | Low dielectric constant composites using covalent organic framework dispersed terpolyimide |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T05%3A32%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Low%20dielectric%20constant%20composites%20using%20covalent%20organic%20framework%20dispersed%20terpolyimide&rft.jtitle=Polymer%20engineering%20and%20science&rft.au=Purushothaman,%20Revathi&rft.date=2024-09&rft.volume=64&rft.issue=9&rft.spage=4539&rft.epage=4550&rft.pages=4539-4550&rft.issn=0032-3888&rft.eissn=1548-2634&rft_id=info:doi/10.1002/pen.26867&rft_dat=%3Cgale_proqu%3EA813643705%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3099284570&rft_id=info:pmid/&rft_galeid=A813643705&rfr_iscdi=true |