Low dielectric constant composites using covalent organic framework dispersed terpolyimide

Polyimides are used in various applications, including fuel cells, membranes, and microelectronics, due to their outstanding tensile properties, great thermal stability, low dielectric constant, and chemical inertness. Applications requiring even lower dielectric constants include interlayer dielect...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Polymer engineering and science 2024-09, Vol.64 (9), p.4539-4550
Hauptverfasser: Purushothaman, Revathi, Pandian, C. K. Arvinda
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4550
container_issue 9
container_start_page 4539
container_title Polymer engineering and science
container_volume 64
creator Purushothaman, Revathi
Pandian, C. K. Arvinda
description Polyimides are used in various applications, including fuel cells, membranes, and microelectronics, due to their outstanding tensile properties, great thermal stability, low dielectric constant, and chemical inertness. Applications requiring even lower dielectric constants include interlayer dielectrics and tape‐automated bonding. In this study, a covalent organic framework (COF‐1) was synthesized and dispersed in various percentages into a solution of terpoly(amide acid) (TPAA) to produce COF‐1/terpolyimide composites. 3,3′,4,4′‐Oxydiphthalic dianhydride (ODPA), 3,3′,4,4′‐biphenyltetracarboxylicdianhydride (BPDA), and 4,4′‐(hexafluoroisopropylidene)diphthalic anhydride (6FDA) were reacted with 4,4′‐(hexafluoroisopropylidene)bis[(4‐aminophenoxy)benzene] (HFBAPP) or 4,4′‐(hexafluoroisopropylidene) dianiline (6FpDA) to form terpoly(amide acid). In this case, monomers with fluorinated substituents (HFBAPP, 6FpDA, and 6FDA) were utilized to improve free volume. Pores of COF‐1 and gaps between polyimide chains and COF‐1 can be filled with air with a dielectric constant (κ) ~1, lowering the κ value of terpolyimide composites. The κ value of COF‐1/terpolyimide composites decreased as COF‐1 content increased, reaching a minimum of 1.96. Tensile properties decreased slightly with increasing COF‐1 levels. The terpolyimides and their composites were thermally stable up to approximately 520°C. As a result, these polymer composites look promising for use as insulators in microelectronic applications. Highlights Terpolyimide is prepared using fluorinated monomers to improve bulk volume. Incorporated COF‐1 into terpoly(amide acid) to introduce pores/voids and reduce dielectric constant. Developed COF‐1/terpolyimide composites with a low dielectric constant of 1.96. Optimized COF‐1/terpolyimide composites for microelectronic applications. Terpolyimides are prepared using three dianhydrides and two diamines, of which three are fluorinated monomers, so that the bulky fluorinated groups reduce the dielectric constant. COF‐1 was prepared and incorporated into the terpolyimide matrix to further lower the dielectric constant and obtain COF‐1/terpolyimide composites suitable for microelectronic applications.
doi_str_mv 10.1002/pen.26867
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_3099284570</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A813643705</galeid><sourcerecordid>A813643705</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3637-ad0a8969cc994e88abb8a75d7d500b53bd9a078c428310e03b28d760aedda9593</originalsourceid><addsrcrecordid>eNp10ltLHDEUB_AgFbrVPvQbLPRJ6KyZyVySRxG1wtJKLy99CZnkzBg7k4w5Wbf77Y2uoAtbAknI_P65MIeQTzld5JQWpxO4RVHzujkgs7wqeVbUrHxHZpSyImOc8_fkA-IdTZZVYkb-LP16biwMoGOweq69w6hcTJNx8mgj4HyF1vVp4UENkL740CuXaBfUCGsf_qY8ThAQzDxCmPywsaM1cEwOOzUgfHwZj8jvy4tf51-z5fer6_OzZaZZzZpMGaq4qIXWQpTAuWpbrprKNKaitK1Ya4SiDddlwVlOgbK24KapqQJjlKgEOyKft_tOwd-vAKO886vg0pGSUSEKXlYNfVV9eoW0rvMxKD1a1PKM56wuWUOrpLI9qgcHQQ3eQWfT8o5f7PGpGRit3hs42QkkE-Ff7NUKUV7__LFrv7yx7dNvAEwd2v424jayb2sdPGKATk7BjipsZE7lU3HIVBzyuTiSPd3adbrf5v9Q3lx82yYeAa2LudU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3099284570</pqid></control><display><type>article</type><title>Low dielectric constant composites using covalent organic framework dispersed terpolyimide</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Purushothaman, Revathi ; Pandian, C. K. Arvinda</creator><creatorcontrib>Purushothaman, Revathi ; Pandian, C. K. Arvinda</creatorcontrib><description>Polyimides are used in various applications, including fuel cells, membranes, and microelectronics, due to their outstanding tensile properties, great thermal stability, low dielectric constant, and chemical inertness. Applications requiring even lower dielectric constants include interlayer dielectrics and tape‐automated bonding. In this study, a covalent organic framework (COF‐1) was synthesized and dispersed in various percentages into a solution of terpoly(amide acid) (TPAA) to produce COF‐1/terpolyimide composites. 3,3′,4,4′‐Oxydiphthalic dianhydride (ODPA), 3,3′,4,4′‐biphenyltetracarboxylicdianhydride (BPDA), and 4,4′‐(hexafluoroisopropylidene)diphthalic anhydride (6FDA) were reacted with 4,4′‐(hexafluoroisopropylidene)bis[(4‐aminophenoxy)benzene] (HFBAPP) or 4,4′‐(hexafluoroisopropylidene) dianiline (6FpDA) to form terpoly(amide acid). In this case, monomers with fluorinated substituents (HFBAPP, 6FpDA, and 6FDA) were utilized to improve free volume. Pores of COF‐1 and gaps between polyimide chains and COF‐1 can be filled with air with a dielectric constant (κ) ~1, lowering the κ value of terpolyimide composites. The κ value of COF‐1/terpolyimide composites decreased as COF‐1 content increased, reaching a minimum of 1.96. Tensile properties decreased slightly with increasing COF‐1 levels. The terpolyimides and their composites were thermally stable up to approximately 520°C. As a result, these polymer composites look promising for use as insulators in microelectronic applications. Highlights Terpolyimide is prepared using fluorinated monomers to improve bulk volume. Incorporated COF‐1 into terpoly(amide acid) to introduce pores/voids and reduce dielectric constant. Developed COF‐1/terpolyimide composites with a low dielectric constant of 1.96. Optimized COF‐1/terpolyimide composites for microelectronic applications. Terpolyimides are prepared using three dianhydrides and two diamines, of which three are fluorinated monomers, so that the bulky fluorinated groups reduce the dielectric constant. COF‐1 was prepared and incorporated into the terpolyimide matrix to further lower the dielectric constant and obtain COF‐1/terpolyimide composites suitable for microelectronic applications.</description><identifier>ISSN: 0032-3888</identifier><identifier>EISSN: 1548-2634</identifier><identifier>DOI: 10.1002/pen.26867</identifier><language>eng</language><publisher>Hoboken, USA: John Wiley &amp; Sons, Inc</publisher><subject>Benzene ; Chemical bonds ; COF‐1 ; composites ; covalent organic framework ; dielectric constant ; Dielectrics ; Electric properties ; Fluorination ; Fuel cell industry ; Fuel cells ; Insulators ; Interlayers ; Mechanical properties ; microelectronic applications ; Microelectronics ; Monomers ; Permittivity ; Polyimide resins ; Polyimides ; Polymer matrix composites ; Tensile properties ; Thermal stability</subject><ispartof>Polymer engineering and science, 2024-09, Vol.64 (9), p.4539-4550</ispartof><rights>2024 Society of Plastics Engineers.</rights><rights>COPYRIGHT 2024 Society of Plastics Engineers, Inc.</rights><rights>2024 Society of Plastics Engineers</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c3637-ad0a8969cc994e88abb8a75d7d500b53bd9a078c428310e03b28d760aedda9593</cites><orcidid>0000-0003-1075-0561 ; 0000-0002-0039-6389</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fpen.26867$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fpen.26867$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27903,27904,45553,45554</link.rule.ids></links><search><creatorcontrib>Purushothaman, Revathi</creatorcontrib><creatorcontrib>Pandian, C. K. Arvinda</creatorcontrib><title>Low dielectric constant composites using covalent organic framework dispersed terpolyimide</title><title>Polymer engineering and science</title><description>Polyimides are used in various applications, including fuel cells, membranes, and microelectronics, due to their outstanding tensile properties, great thermal stability, low dielectric constant, and chemical inertness. Applications requiring even lower dielectric constants include interlayer dielectrics and tape‐automated bonding. In this study, a covalent organic framework (COF‐1) was synthesized and dispersed in various percentages into a solution of terpoly(amide acid) (TPAA) to produce COF‐1/terpolyimide composites. 3,3′,4,4′‐Oxydiphthalic dianhydride (ODPA), 3,3′,4,4′‐biphenyltetracarboxylicdianhydride (BPDA), and 4,4′‐(hexafluoroisopropylidene)diphthalic anhydride (6FDA) were reacted with 4,4′‐(hexafluoroisopropylidene)bis[(4‐aminophenoxy)benzene] (HFBAPP) or 4,4′‐(hexafluoroisopropylidene) dianiline (6FpDA) to form terpoly(amide acid). In this case, monomers with fluorinated substituents (HFBAPP, 6FpDA, and 6FDA) were utilized to improve free volume. Pores of COF‐1 and gaps between polyimide chains and COF‐1 can be filled with air with a dielectric constant (κ) ~1, lowering the κ value of terpolyimide composites. The κ value of COF‐1/terpolyimide composites decreased as COF‐1 content increased, reaching a minimum of 1.96. Tensile properties decreased slightly with increasing COF‐1 levels. The terpolyimides and their composites were thermally stable up to approximately 520°C. As a result, these polymer composites look promising for use as insulators in microelectronic applications. Highlights Terpolyimide is prepared using fluorinated monomers to improve bulk volume. Incorporated COF‐1 into terpoly(amide acid) to introduce pores/voids and reduce dielectric constant. Developed COF‐1/terpolyimide composites with a low dielectric constant of 1.96. Optimized COF‐1/terpolyimide composites for microelectronic applications. Terpolyimides are prepared using three dianhydrides and two diamines, of which three are fluorinated monomers, so that the bulky fluorinated groups reduce the dielectric constant. COF‐1 was prepared and incorporated into the terpolyimide matrix to further lower the dielectric constant and obtain COF‐1/terpolyimide composites suitable for microelectronic applications.</description><subject>Benzene</subject><subject>Chemical bonds</subject><subject>COF‐1</subject><subject>composites</subject><subject>covalent organic framework</subject><subject>dielectric constant</subject><subject>Dielectrics</subject><subject>Electric properties</subject><subject>Fluorination</subject><subject>Fuel cell industry</subject><subject>Fuel cells</subject><subject>Insulators</subject><subject>Interlayers</subject><subject>Mechanical properties</subject><subject>microelectronic applications</subject><subject>Microelectronics</subject><subject>Monomers</subject><subject>Permittivity</subject><subject>Polyimide resins</subject><subject>Polyimides</subject><subject>Polymer matrix composites</subject><subject>Tensile properties</subject><subject>Thermal stability</subject><issn>0032-3888</issn><issn>1548-2634</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>N95</sourceid><recordid>eNp10ltLHDEUB_AgFbrVPvQbLPRJ6KyZyVySRxG1wtJKLy99CZnkzBg7k4w5Wbf77Y2uoAtbAknI_P65MIeQTzld5JQWpxO4RVHzujkgs7wqeVbUrHxHZpSyImOc8_fkA-IdTZZVYkb-LP16biwMoGOweq69w6hcTJNx8mgj4HyF1vVp4UENkL740CuXaBfUCGsf_qY8ThAQzDxCmPywsaM1cEwOOzUgfHwZj8jvy4tf51-z5fer6_OzZaZZzZpMGaq4qIXWQpTAuWpbrprKNKaitK1Ya4SiDddlwVlOgbK24KapqQJjlKgEOyKft_tOwd-vAKO886vg0pGSUSEKXlYNfVV9eoW0rvMxKD1a1PKM56wuWUOrpLI9qgcHQQ3eQWfT8o5f7PGpGRit3hs42QkkE-Ff7NUKUV7__LFrv7yx7dNvAEwd2v424jayb2sdPGKATk7BjipsZE7lU3HIVBzyuTiSPd3adbrf5v9Q3lx82yYeAa2LudU</recordid><startdate>202409</startdate><enddate>202409</enddate><creator>Purushothaman, Revathi</creator><creator>Pandian, C. K. Arvinda</creator><general>John Wiley &amp; Sons, Inc</general><general>Society of Plastics Engineers, Inc</general><general>Blackwell Publishing Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>N95</scope><scope>XI7</scope><scope>ISR</scope><scope>7SR</scope><scope>8FD</scope><scope>JG9</scope><orcidid>https://orcid.org/0000-0003-1075-0561</orcidid><orcidid>https://orcid.org/0000-0002-0039-6389</orcidid></search><sort><creationdate>202409</creationdate><title>Low dielectric constant composites using covalent organic framework dispersed terpolyimide</title><author>Purushothaman, Revathi ; Pandian, C. K. Arvinda</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3637-ad0a8969cc994e88abb8a75d7d500b53bd9a078c428310e03b28d760aedda9593</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Benzene</topic><topic>Chemical bonds</topic><topic>COF‐1</topic><topic>composites</topic><topic>covalent organic framework</topic><topic>dielectric constant</topic><topic>Dielectrics</topic><topic>Electric properties</topic><topic>Fluorination</topic><topic>Fuel cell industry</topic><topic>Fuel cells</topic><topic>Insulators</topic><topic>Interlayers</topic><topic>Mechanical properties</topic><topic>microelectronic applications</topic><topic>Microelectronics</topic><topic>Monomers</topic><topic>Permittivity</topic><topic>Polyimide resins</topic><topic>Polyimides</topic><topic>Polymer matrix composites</topic><topic>Tensile properties</topic><topic>Thermal stability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Purushothaman, Revathi</creatorcontrib><creatorcontrib>Pandian, C. K. Arvinda</creatorcontrib><collection>CrossRef</collection><collection>Gale Business: Insights</collection><collection>Business Insights: Essentials</collection><collection>Gale In Context: Science</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Polymer engineering and science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Purushothaman, Revathi</au><au>Pandian, C. K. Arvinda</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Low dielectric constant composites using covalent organic framework dispersed terpolyimide</atitle><jtitle>Polymer engineering and science</jtitle><date>2024-09</date><risdate>2024</risdate><volume>64</volume><issue>9</issue><spage>4539</spage><epage>4550</epage><pages>4539-4550</pages><issn>0032-3888</issn><eissn>1548-2634</eissn><abstract>Polyimides are used in various applications, including fuel cells, membranes, and microelectronics, due to their outstanding tensile properties, great thermal stability, low dielectric constant, and chemical inertness. Applications requiring even lower dielectric constants include interlayer dielectrics and tape‐automated bonding. In this study, a covalent organic framework (COF‐1) was synthesized and dispersed in various percentages into a solution of terpoly(amide acid) (TPAA) to produce COF‐1/terpolyimide composites. 3,3′,4,4′‐Oxydiphthalic dianhydride (ODPA), 3,3′,4,4′‐biphenyltetracarboxylicdianhydride (BPDA), and 4,4′‐(hexafluoroisopropylidene)diphthalic anhydride (6FDA) were reacted with 4,4′‐(hexafluoroisopropylidene)bis[(4‐aminophenoxy)benzene] (HFBAPP) or 4,4′‐(hexafluoroisopropylidene) dianiline (6FpDA) to form terpoly(amide acid). In this case, monomers with fluorinated substituents (HFBAPP, 6FpDA, and 6FDA) were utilized to improve free volume. Pores of COF‐1 and gaps between polyimide chains and COF‐1 can be filled with air with a dielectric constant (κ) ~1, lowering the κ value of terpolyimide composites. The κ value of COF‐1/terpolyimide composites decreased as COF‐1 content increased, reaching a minimum of 1.96. Tensile properties decreased slightly with increasing COF‐1 levels. The terpolyimides and their composites were thermally stable up to approximately 520°C. As a result, these polymer composites look promising for use as insulators in microelectronic applications. Highlights Terpolyimide is prepared using fluorinated monomers to improve bulk volume. Incorporated COF‐1 into terpoly(amide acid) to introduce pores/voids and reduce dielectric constant. Developed COF‐1/terpolyimide composites with a low dielectric constant of 1.96. Optimized COF‐1/terpolyimide composites for microelectronic applications. Terpolyimides are prepared using three dianhydrides and two diamines, of which three are fluorinated monomers, so that the bulky fluorinated groups reduce the dielectric constant. COF‐1 was prepared and incorporated into the terpolyimide matrix to further lower the dielectric constant and obtain COF‐1/terpolyimide composites suitable for microelectronic applications.</abstract><cop>Hoboken, USA</cop><pub>John Wiley &amp; Sons, Inc</pub><doi>10.1002/pen.26867</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0003-1075-0561</orcidid><orcidid>https://orcid.org/0000-0002-0039-6389</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0032-3888
ispartof Polymer engineering and science, 2024-09, Vol.64 (9), p.4539-4550
issn 0032-3888
1548-2634
language eng
recordid cdi_proquest_journals_3099284570
source Wiley Online Library Journals Frontfile Complete
subjects Benzene
Chemical bonds
COF‐1
composites
covalent organic framework
dielectric constant
Dielectrics
Electric properties
Fluorination
Fuel cell industry
Fuel cells
Insulators
Interlayers
Mechanical properties
microelectronic applications
Microelectronics
Monomers
Permittivity
Polyimide resins
Polyimides
Polymer matrix composites
Tensile properties
Thermal stability
title Low dielectric constant composites using covalent organic framework dispersed terpolyimide
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T05%3A32%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Low%20dielectric%20constant%20composites%20using%20covalent%20organic%20framework%20dispersed%20terpolyimide&rft.jtitle=Polymer%20engineering%20and%20science&rft.au=Purushothaman,%20Revathi&rft.date=2024-09&rft.volume=64&rft.issue=9&rft.spage=4539&rft.epage=4550&rft.pages=4539-4550&rft.issn=0032-3888&rft.eissn=1548-2634&rft_id=info:doi/10.1002/pen.26867&rft_dat=%3Cgale_proqu%3EA813643705%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3099284570&rft_id=info:pmid/&rft_galeid=A813643705&rfr_iscdi=true