Magnetic Resonance of Excited States in Semiconductors and Related Nanostructures
Electron and nuclear spins in solids, coherently coupled to photons, provide promising resources for quantum information processing and sensing. Obtaining information about short-lived excited states is critical for realizing ultrafast all-optical spin control methods. After a brief review of early...
Gespeichert in:
Veröffentlicht in: | Applied magnetic resonance 2024-09, Vol.55 (9), p.1011-1030 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1030 |
---|---|
container_issue | 9 |
container_start_page | 1011 |
container_title | Applied magnetic resonance |
container_volume | 55 |
creator | Baranov, Pavel G. Babunts, Roman A. Romanov, Nikolai G. |
description | Electron and nuclear spins in solids, coherently coupled to photons, provide promising resources for quantum information processing and sensing. Obtaining information about short-lived excited states is critical for realizing ultrafast all-optical spin control methods. After a brief review of early magnetic resonance studies of excited states, the following representative examples of the use of magnetic resonance spectroscopy to study excited states in wide-gap materials, semiconductors and nanostructures based on them will be considered: (1) optically detected magnetic resonance (ODMR), electron spin echo, electron-nuclear double resonance in the excited state on the example of self-trapped excitons in ionic-covalent silver halide crystals and nanocrystals, (2) ODMR and level anticrossing (LAC) spectroscopy of localized heavy-hole excitons in semiconductor quantum wells and superlattices, (3) LAC and ODMR in excited states of spin centers in diamond and silicon carbide, (4) the use of LAC and cross-relaxation for all-optical sensing with submicron spatial resolution. |
doi_str_mv | 10.1007/s00723-024-01695-3 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3099196802</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3099196802</sourcerecordid><originalsourceid>FETCH-LOGICAL-c200t-83f1fa7f09a344aea9caa25c5e9e389b309816fb3d26b4af7220ddd2bc2318023</originalsourceid><addsrcrecordid>eNp9kMFKAzEQhoMoWKsv4GnBc3SS7G42RynVClXR6jlks0nZ0iY1yYK-vakrePMyc5jv-wd-hC4JXBMAfhPzoAwDLTGQWlSYHaEJqQnDvAJ-jCYgGMeClfwUncW4ASBVQ_gEvTyqtTOp18Wrid4pp03hbTH_1H0yXbFKKplY9K5YmV2vvesGnXyIhXJdNrbqAD0p52MK-TIEE8_RiVXbaC5-9xS9383fZgu8fL5_mN0usaYACTfMEqu4BaFYWSqjhFaKVroywrBGtAxEQ2rbso7WbakspxS6rqOtpow0QNkUXY25--A_BhOT3PghuPxSZlcQUY8UHSkdfIzBWLkP_U6FL0lAHqqTY3UyVyd_qpMsS2yUYobd2oS_6H-sb_SLcb8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3099196802</pqid></control><display><type>article</type><title>Magnetic Resonance of Excited States in Semiconductors and Related Nanostructures</title><source>SpringerNature Journals</source><creator>Baranov, Pavel G. ; Babunts, Roman A. ; Romanov, Nikolai G.</creator><creatorcontrib>Baranov, Pavel G. ; Babunts, Roman A. ; Romanov, Nikolai G.</creatorcontrib><description>Electron and nuclear spins in solids, coherently coupled to photons, provide promising resources for quantum information processing and sensing. Obtaining information about short-lived excited states is critical for realizing ultrafast all-optical spin control methods. After a brief review of early magnetic resonance studies of excited states, the following representative examples of the use of magnetic resonance spectroscopy to study excited states in wide-gap materials, semiconductors and nanostructures based on them will be considered: (1) optically detected magnetic resonance (ODMR), electron spin echo, electron-nuclear double resonance in the excited state on the example of self-trapped excitons in ionic-covalent silver halide crystals and nanocrystals, (2) ODMR and level anticrossing (LAC) spectroscopy of localized heavy-hole excitons in semiconductor quantum wells and superlattices, (3) LAC and ODMR in excited states of spin centers in diamond and silicon carbide, (4) the use of LAC and cross-relaxation for all-optical sensing with submicron spatial resolution.</description><identifier>ISSN: 0937-9347</identifier><identifier>EISSN: 1613-7507</identifier><identifier>DOI: 10.1007/s00723-024-01695-3</identifier><language>eng</language><publisher>Vienna: Springer Vienna</publisher><subject>Atoms and Molecules in Strong Fields ; Control methods ; Cross relaxation ; Crystals ; Data processing ; Electron spin ; Electrons ; Excitation spectra ; Excitons ; Laser Matter Interaction ; Magnetic fields ; Magnetic resonance spectroscopy ; Magnetic semiconductors ; Nanocrystals ; Nanostructure ; Organic Chemistry ; Physical Chemistry ; Physics ; Physics and Astronomy ; Quantum phenomena ; Quantum wells ; Review ; Semiconductors ; Silicon carbide ; Silver halides ; Solid State Physics ; Spatial resolution ; Spectroscopy/Spectrometry ; Spectrum analysis ; Superlattices</subject><ispartof>Applied magnetic resonance, 2024-09, Vol.55 (9), p.1011-1030</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Austria, part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c200t-83f1fa7f09a344aea9caa25c5e9e389b309816fb3d26b4af7220ddd2bc2318023</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00723-024-01695-3$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00723-024-01695-3$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>315,782,786,27933,27934,41497,42566,51328</link.rule.ids></links><search><creatorcontrib>Baranov, Pavel G.</creatorcontrib><creatorcontrib>Babunts, Roman A.</creatorcontrib><creatorcontrib>Romanov, Nikolai G.</creatorcontrib><title>Magnetic Resonance of Excited States in Semiconductors and Related Nanostructures</title><title>Applied magnetic resonance</title><addtitle>Appl Magn Reson</addtitle><description>Electron and nuclear spins in solids, coherently coupled to photons, provide promising resources for quantum information processing and sensing. Obtaining information about short-lived excited states is critical for realizing ultrafast all-optical spin control methods. After a brief review of early magnetic resonance studies of excited states, the following representative examples of the use of magnetic resonance spectroscopy to study excited states in wide-gap materials, semiconductors and nanostructures based on them will be considered: (1) optically detected magnetic resonance (ODMR), electron spin echo, electron-nuclear double resonance in the excited state on the example of self-trapped excitons in ionic-covalent silver halide crystals and nanocrystals, (2) ODMR and level anticrossing (LAC) spectroscopy of localized heavy-hole excitons in semiconductor quantum wells and superlattices, (3) LAC and ODMR in excited states of spin centers in diamond and silicon carbide, (4) the use of LAC and cross-relaxation for all-optical sensing with submicron spatial resolution.</description><subject>Atoms and Molecules in Strong Fields</subject><subject>Control methods</subject><subject>Cross relaxation</subject><subject>Crystals</subject><subject>Data processing</subject><subject>Electron spin</subject><subject>Electrons</subject><subject>Excitation spectra</subject><subject>Excitons</subject><subject>Laser Matter Interaction</subject><subject>Magnetic fields</subject><subject>Magnetic resonance spectroscopy</subject><subject>Magnetic semiconductors</subject><subject>Nanocrystals</subject><subject>Nanostructure</subject><subject>Organic Chemistry</subject><subject>Physical Chemistry</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Quantum phenomena</subject><subject>Quantum wells</subject><subject>Review</subject><subject>Semiconductors</subject><subject>Silicon carbide</subject><subject>Silver halides</subject><subject>Solid State Physics</subject><subject>Spatial resolution</subject><subject>Spectroscopy/Spectrometry</subject><subject>Spectrum analysis</subject><subject>Superlattices</subject><issn>0937-9347</issn><issn>1613-7507</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kMFKAzEQhoMoWKsv4GnBc3SS7G42RynVClXR6jlks0nZ0iY1yYK-vakrePMyc5jv-wd-hC4JXBMAfhPzoAwDLTGQWlSYHaEJqQnDvAJ-jCYgGMeClfwUncW4ASBVQ_gEvTyqtTOp18Wrid4pp03hbTH_1H0yXbFKKplY9K5YmV2vvesGnXyIhXJdNrbqAD0p52MK-TIEE8_RiVXbaC5-9xS9383fZgu8fL5_mN0usaYACTfMEqu4BaFYWSqjhFaKVroywrBGtAxEQ2rbso7WbakspxS6rqOtpow0QNkUXY25--A_BhOT3PghuPxSZlcQUY8UHSkdfIzBWLkP_U6FL0lAHqqTY3UyVyd_qpMsS2yUYobd2oS_6H-sb_SLcb8</recordid><startdate>20240901</startdate><enddate>20240901</enddate><creator>Baranov, Pavel G.</creator><creator>Babunts, Roman A.</creator><creator>Romanov, Nikolai G.</creator><general>Springer Vienna</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20240901</creationdate><title>Magnetic Resonance of Excited States in Semiconductors and Related Nanostructures</title><author>Baranov, Pavel G. ; Babunts, Roman A. ; Romanov, Nikolai G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c200t-83f1fa7f09a344aea9caa25c5e9e389b309816fb3d26b4af7220ddd2bc2318023</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Atoms and Molecules in Strong Fields</topic><topic>Control methods</topic><topic>Cross relaxation</topic><topic>Crystals</topic><topic>Data processing</topic><topic>Electron spin</topic><topic>Electrons</topic><topic>Excitation spectra</topic><topic>Excitons</topic><topic>Laser Matter Interaction</topic><topic>Magnetic fields</topic><topic>Magnetic resonance spectroscopy</topic><topic>Magnetic semiconductors</topic><topic>Nanocrystals</topic><topic>Nanostructure</topic><topic>Organic Chemistry</topic><topic>Physical Chemistry</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Quantum phenomena</topic><topic>Quantum wells</topic><topic>Review</topic><topic>Semiconductors</topic><topic>Silicon carbide</topic><topic>Silver halides</topic><topic>Solid State Physics</topic><topic>Spatial resolution</topic><topic>Spectroscopy/Spectrometry</topic><topic>Spectrum analysis</topic><topic>Superlattices</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Baranov, Pavel G.</creatorcontrib><creatorcontrib>Babunts, Roman A.</creatorcontrib><creatorcontrib>Romanov, Nikolai G.</creatorcontrib><collection>CrossRef</collection><jtitle>Applied magnetic resonance</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Baranov, Pavel G.</au><au>Babunts, Roman A.</au><au>Romanov, Nikolai G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Magnetic Resonance of Excited States in Semiconductors and Related Nanostructures</atitle><jtitle>Applied magnetic resonance</jtitle><stitle>Appl Magn Reson</stitle><date>2024-09-01</date><risdate>2024</risdate><volume>55</volume><issue>9</issue><spage>1011</spage><epage>1030</epage><pages>1011-1030</pages><issn>0937-9347</issn><eissn>1613-7507</eissn><abstract>Electron and nuclear spins in solids, coherently coupled to photons, provide promising resources for quantum information processing and sensing. Obtaining information about short-lived excited states is critical for realizing ultrafast all-optical spin control methods. After a brief review of early magnetic resonance studies of excited states, the following representative examples of the use of magnetic resonance spectroscopy to study excited states in wide-gap materials, semiconductors and nanostructures based on them will be considered: (1) optically detected magnetic resonance (ODMR), electron spin echo, electron-nuclear double resonance in the excited state on the example of self-trapped excitons in ionic-covalent silver halide crystals and nanocrystals, (2) ODMR and level anticrossing (LAC) spectroscopy of localized heavy-hole excitons in semiconductor quantum wells and superlattices, (3) LAC and ODMR in excited states of spin centers in diamond and silicon carbide, (4) the use of LAC and cross-relaxation for all-optical sensing with submicron spatial resolution.</abstract><cop>Vienna</cop><pub>Springer Vienna</pub><doi>10.1007/s00723-024-01695-3</doi><tpages>20</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0937-9347 |
ispartof | Applied magnetic resonance, 2024-09, Vol.55 (9), p.1011-1030 |
issn | 0937-9347 1613-7507 |
language | eng |
recordid | cdi_proquest_journals_3099196802 |
source | SpringerNature Journals |
subjects | Atoms and Molecules in Strong Fields Control methods Cross relaxation Crystals Data processing Electron spin Electrons Excitation spectra Excitons Laser Matter Interaction Magnetic fields Magnetic resonance spectroscopy Magnetic semiconductors Nanocrystals Nanostructure Organic Chemistry Physical Chemistry Physics Physics and Astronomy Quantum phenomena Quantum wells Review Semiconductors Silicon carbide Silver halides Solid State Physics Spatial resolution Spectroscopy/Spectrometry Spectrum analysis Superlattices |
title | Magnetic Resonance of Excited States in Semiconductors and Related Nanostructures |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-03T03%3A29%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Magnetic%20Resonance%20of%20Excited%20States%20in%20Semiconductors%20and%20Related%20Nanostructures&rft.jtitle=Applied%20magnetic%20resonance&rft.au=Baranov,%20Pavel%20G.&rft.date=2024-09-01&rft.volume=55&rft.issue=9&rft.spage=1011&rft.epage=1030&rft.pages=1011-1030&rft.issn=0937-9347&rft.eissn=1613-7507&rft_id=info:doi/10.1007/s00723-024-01695-3&rft_dat=%3Cproquest_cross%3E3099196802%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3099196802&rft_id=info:pmid/&rfr_iscdi=true |