Magnetic Resonance of Excited States in Semiconductors and Related Nanostructures

Electron and nuclear spins in solids, coherently coupled to photons, provide promising resources for quantum information processing and sensing. Obtaining information about short-lived excited states is critical for realizing ultrafast all-optical spin control methods. After a brief review of early...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied magnetic resonance 2024-09, Vol.55 (9), p.1011-1030
Hauptverfasser: Baranov, Pavel G., Babunts, Roman A., Romanov, Nikolai G.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1030
container_issue 9
container_start_page 1011
container_title Applied magnetic resonance
container_volume 55
creator Baranov, Pavel G.
Babunts, Roman A.
Romanov, Nikolai G.
description Electron and nuclear spins in solids, coherently coupled to photons, provide promising resources for quantum information processing and sensing. Obtaining information about short-lived excited states is critical for realizing ultrafast all-optical spin control methods. After a brief review of early magnetic resonance studies of excited states, the following representative examples of the use of magnetic resonance spectroscopy to study excited states in wide-gap materials, semiconductors and nanostructures based on them will be considered: (1) optically detected magnetic resonance (ODMR), electron spin echo, electron-nuclear double resonance in the excited state on the example of self-trapped excitons in ionic-covalent silver halide crystals and nanocrystals, (2) ODMR and level anticrossing (LAC) spectroscopy of localized heavy-hole excitons in semiconductor quantum wells and superlattices, (3) LAC and ODMR in excited states of spin centers in diamond and silicon carbide, (4) the use of LAC and cross-relaxation for all-optical sensing with submicron spatial resolution.
doi_str_mv 10.1007/s00723-024-01695-3
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3099196802</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3099196802</sourcerecordid><originalsourceid>FETCH-LOGICAL-c200t-83f1fa7f09a344aea9caa25c5e9e389b309816fb3d26b4af7220ddd2bc2318023</originalsourceid><addsrcrecordid>eNp9kMFKAzEQhoMoWKsv4GnBc3SS7G42RynVClXR6jlks0nZ0iY1yYK-vakrePMyc5jv-wd-hC4JXBMAfhPzoAwDLTGQWlSYHaEJqQnDvAJ-jCYgGMeClfwUncW4ASBVQ_gEvTyqtTOp18Wrid4pp03hbTH_1H0yXbFKKplY9K5YmV2vvesGnXyIhXJdNrbqAD0p52MK-TIEE8_RiVXbaC5-9xS9383fZgu8fL5_mN0usaYACTfMEqu4BaFYWSqjhFaKVroywrBGtAxEQ2rbso7WbakspxS6rqOtpow0QNkUXY25--A_BhOT3PghuPxSZlcQUY8UHSkdfIzBWLkP_U6FL0lAHqqTY3UyVyd_qpMsS2yUYobd2oS_6H-sb_SLcb8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3099196802</pqid></control><display><type>article</type><title>Magnetic Resonance of Excited States in Semiconductors and Related Nanostructures</title><source>SpringerNature Journals</source><creator>Baranov, Pavel G. ; Babunts, Roman A. ; Romanov, Nikolai G.</creator><creatorcontrib>Baranov, Pavel G. ; Babunts, Roman A. ; Romanov, Nikolai G.</creatorcontrib><description>Electron and nuclear spins in solids, coherently coupled to photons, provide promising resources for quantum information processing and sensing. Obtaining information about short-lived excited states is critical for realizing ultrafast all-optical spin control methods. After a brief review of early magnetic resonance studies of excited states, the following representative examples of the use of magnetic resonance spectroscopy to study excited states in wide-gap materials, semiconductors and nanostructures based on them will be considered: (1) optically detected magnetic resonance (ODMR), electron spin echo, electron-nuclear double resonance in the excited state on the example of self-trapped excitons in ionic-covalent silver halide crystals and nanocrystals, (2) ODMR and level anticrossing (LAC) spectroscopy of localized heavy-hole excitons in semiconductor quantum wells and superlattices, (3) LAC and ODMR in excited states of spin centers in diamond and silicon carbide, (4) the use of LAC and cross-relaxation for all-optical sensing with submicron spatial resolution.</description><identifier>ISSN: 0937-9347</identifier><identifier>EISSN: 1613-7507</identifier><identifier>DOI: 10.1007/s00723-024-01695-3</identifier><language>eng</language><publisher>Vienna: Springer Vienna</publisher><subject>Atoms and Molecules in Strong Fields ; Control methods ; Cross relaxation ; Crystals ; Data processing ; Electron spin ; Electrons ; Excitation spectra ; Excitons ; Laser Matter Interaction ; Magnetic fields ; Magnetic resonance spectroscopy ; Magnetic semiconductors ; Nanocrystals ; Nanostructure ; Organic Chemistry ; Physical Chemistry ; Physics ; Physics and Astronomy ; Quantum phenomena ; Quantum wells ; Review ; Semiconductors ; Silicon carbide ; Silver halides ; Solid State Physics ; Spatial resolution ; Spectroscopy/Spectrometry ; Spectrum analysis ; Superlattices</subject><ispartof>Applied magnetic resonance, 2024-09, Vol.55 (9), p.1011-1030</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Austria, part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c200t-83f1fa7f09a344aea9caa25c5e9e389b309816fb3d26b4af7220ddd2bc2318023</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00723-024-01695-3$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00723-024-01695-3$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>315,782,786,27933,27934,41497,42566,51328</link.rule.ids></links><search><creatorcontrib>Baranov, Pavel G.</creatorcontrib><creatorcontrib>Babunts, Roman A.</creatorcontrib><creatorcontrib>Romanov, Nikolai G.</creatorcontrib><title>Magnetic Resonance of Excited States in Semiconductors and Related Nanostructures</title><title>Applied magnetic resonance</title><addtitle>Appl Magn Reson</addtitle><description>Electron and nuclear spins in solids, coherently coupled to photons, provide promising resources for quantum information processing and sensing. Obtaining information about short-lived excited states is critical for realizing ultrafast all-optical spin control methods. After a brief review of early magnetic resonance studies of excited states, the following representative examples of the use of magnetic resonance spectroscopy to study excited states in wide-gap materials, semiconductors and nanostructures based on them will be considered: (1) optically detected magnetic resonance (ODMR), electron spin echo, electron-nuclear double resonance in the excited state on the example of self-trapped excitons in ionic-covalent silver halide crystals and nanocrystals, (2) ODMR and level anticrossing (LAC) spectroscopy of localized heavy-hole excitons in semiconductor quantum wells and superlattices, (3) LAC and ODMR in excited states of spin centers in diamond and silicon carbide, (4) the use of LAC and cross-relaxation for all-optical sensing with submicron spatial resolution.</description><subject>Atoms and Molecules in Strong Fields</subject><subject>Control methods</subject><subject>Cross relaxation</subject><subject>Crystals</subject><subject>Data processing</subject><subject>Electron spin</subject><subject>Electrons</subject><subject>Excitation spectra</subject><subject>Excitons</subject><subject>Laser Matter Interaction</subject><subject>Magnetic fields</subject><subject>Magnetic resonance spectroscopy</subject><subject>Magnetic semiconductors</subject><subject>Nanocrystals</subject><subject>Nanostructure</subject><subject>Organic Chemistry</subject><subject>Physical Chemistry</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Quantum phenomena</subject><subject>Quantum wells</subject><subject>Review</subject><subject>Semiconductors</subject><subject>Silicon carbide</subject><subject>Silver halides</subject><subject>Solid State Physics</subject><subject>Spatial resolution</subject><subject>Spectroscopy/Spectrometry</subject><subject>Spectrum analysis</subject><subject>Superlattices</subject><issn>0937-9347</issn><issn>1613-7507</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kMFKAzEQhoMoWKsv4GnBc3SS7G42RynVClXR6jlks0nZ0iY1yYK-vakrePMyc5jv-wd-hC4JXBMAfhPzoAwDLTGQWlSYHaEJqQnDvAJ-jCYgGMeClfwUncW4ASBVQ_gEvTyqtTOp18Wrid4pp03hbTH_1H0yXbFKKplY9K5YmV2vvesGnXyIhXJdNrbqAD0p52MK-TIEE8_RiVXbaC5-9xS9383fZgu8fL5_mN0usaYACTfMEqu4BaFYWSqjhFaKVroywrBGtAxEQ2rbso7WbakspxS6rqOtpow0QNkUXY25--A_BhOT3PghuPxSZlcQUY8UHSkdfIzBWLkP_U6FL0lAHqqTY3UyVyd_qpMsS2yUYobd2oS_6H-sb_SLcb8</recordid><startdate>20240901</startdate><enddate>20240901</enddate><creator>Baranov, Pavel G.</creator><creator>Babunts, Roman A.</creator><creator>Romanov, Nikolai G.</creator><general>Springer Vienna</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20240901</creationdate><title>Magnetic Resonance of Excited States in Semiconductors and Related Nanostructures</title><author>Baranov, Pavel G. ; Babunts, Roman A. ; Romanov, Nikolai G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c200t-83f1fa7f09a344aea9caa25c5e9e389b309816fb3d26b4af7220ddd2bc2318023</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Atoms and Molecules in Strong Fields</topic><topic>Control methods</topic><topic>Cross relaxation</topic><topic>Crystals</topic><topic>Data processing</topic><topic>Electron spin</topic><topic>Electrons</topic><topic>Excitation spectra</topic><topic>Excitons</topic><topic>Laser Matter Interaction</topic><topic>Magnetic fields</topic><topic>Magnetic resonance spectroscopy</topic><topic>Magnetic semiconductors</topic><topic>Nanocrystals</topic><topic>Nanostructure</topic><topic>Organic Chemistry</topic><topic>Physical Chemistry</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Quantum phenomena</topic><topic>Quantum wells</topic><topic>Review</topic><topic>Semiconductors</topic><topic>Silicon carbide</topic><topic>Silver halides</topic><topic>Solid State Physics</topic><topic>Spatial resolution</topic><topic>Spectroscopy/Spectrometry</topic><topic>Spectrum analysis</topic><topic>Superlattices</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Baranov, Pavel G.</creatorcontrib><creatorcontrib>Babunts, Roman A.</creatorcontrib><creatorcontrib>Romanov, Nikolai G.</creatorcontrib><collection>CrossRef</collection><jtitle>Applied magnetic resonance</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Baranov, Pavel G.</au><au>Babunts, Roman A.</au><au>Romanov, Nikolai G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Magnetic Resonance of Excited States in Semiconductors and Related Nanostructures</atitle><jtitle>Applied magnetic resonance</jtitle><stitle>Appl Magn Reson</stitle><date>2024-09-01</date><risdate>2024</risdate><volume>55</volume><issue>9</issue><spage>1011</spage><epage>1030</epage><pages>1011-1030</pages><issn>0937-9347</issn><eissn>1613-7507</eissn><abstract>Electron and nuclear spins in solids, coherently coupled to photons, provide promising resources for quantum information processing and sensing. Obtaining information about short-lived excited states is critical for realizing ultrafast all-optical spin control methods. After a brief review of early magnetic resonance studies of excited states, the following representative examples of the use of magnetic resonance spectroscopy to study excited states in wide-gap materials, semiconductors and nanostructures based on them will be considered: (1) optically detected magnetic resonance (ODMR), electron spin echo, electron-nuclear double resonance in the excited state on the example of self-trapped excitons in ionic-covalent silver halide crystals and nanocrystals, (2) ODMR and level anticrossing (LAC) spectroscopy of localized heavy-hole excitons in semiconductor quantum wells and superlattices, (3) LAC and ODMR in excited states of spin centers in diamond and silicon carbide, (4) the use of LAC and cross-relaxation for all-optical sensing with submicron spatial resolution.</abstract><cop>Vienna</cop><pub>Springer Vienna</pub><doi>10.1007/s00723-024-01695-3</doi><tpages>20</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0937-9347
ispartof Applied magnetic resonance, 2024-09, Vol.55 (9), p.1011-1030
issn 0937-9347
1613-7507
language eng
recordid cdi_proquest_journals_3099196802
source SpringerNature Journals
subjects Atoms and Molecules in Strong Fields
Control methods
Cross relaxation
Crystals
Data processing
Electron spin
Electrons
Excitation spectra
Excitons
Laser Matter Interaction
Magnetic fields
Magnetic resonance spectroscopy
Magnetic semiconductors
Nanocrystals
Nanostructure
Organic Chemistry
Physical Chemistry
Physics
Physics and Astronomy
Quantum phenomena
Quantum wells
Review
Semiconductors
Silicon carbide
Silver halides
Solid State Physics
Spatial resolution
Spectroscopy/Spectrometry
Spectrum analysis
Superlattices
title Magnetic Resonance of Excited States in Semiconductors and Related Nanostructures
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-03T03%3A29%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Magnetic%20Resonance%20of%20Excited%20States%20in%20Semiconductors%20and%20Related%20Nanostructures&rft.jtitle=Applied%20magnetic%20resonance&rft.au=Baranov,%20Pavel%20G.&rft.date=2024-09-01&rft.volume=55&rft.issue=9&rft.spage=1011&rft.epage=1030&rft.pages=1011-1030&rft.issn=0937-9347&rft.eissn=1613-7507&rft_id=info:doi/10.1007/s00723-024-01695-3&rft_dat=%3Cproquest_cross%3E3099196802%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3099196802&rft_id=info:pmid/&rfr_iscdi=true