SympGNNs: Symplectic Graph Neural Networks for identifiying high-dimensional Hamiltonian systems and node classification
Existing neural network models to learn Hamiltonian systems, such as SympNets, although accurate in low-dimensions, struggle to learn the correct dynamics for high-dimensional many-body systems. Herein, we introduce Symplectic Graph Neural Networks (SympGNNs) that can effectively handle system ident...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2024-08 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Varghese, Alan John Zhang, Zhen Karniadakis, George Em |
description | Existing neural network models to learn Hamiltonian systems, such as SympNets, although accurate in low-dimensions, struggle to learn the correct dynamics for high-dimensional many-body systems. Herein, we introduce Symplectic Graph Neural Networks (SympGNNs) that can effectively handle system identification in high-dimensional Hamiltonian systems, as well as node classification. SympGNNs combines symplectic maps with permutation equivariance, a property of graph neural networks. Specifically, we propose two variants of SympGNNs: i) G-SympGNN and ii) LA-SympGNN, arising from different parameterizations of the kinetic and potential energy. We demonstrate the capabilities of SympGNN on two physical examples: a 40-particle coupled Harmonic oscillator, and a 2000-particle molecular dynamics simulation in a two-dimensional Lennard-Jones potential. Furthermore, we demonstrate the performance of SympGNN in the node classification task, achieving accuracy comparable to the state-of-the-art. We also empirically show that SympGNN can overcome the oversmoothing and heterophily problems, two key challenges in the field of graph neural networks. |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_3098944746</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3098944746</sourcerecordid><originalsourceid>FETCH-proquest_journals_30989447463</originalsourceid><addsrcrecordid>eNqNjMsKwjAQRYMgKOo_DLgu1KQPdSs-Vt3oXkKb2tE0qZkU7d8bwQ9wde7inDtiUy7EKlonnE_YgugexzHPcp6mYsre56HtjkVBW_gurUqPJRyd7BooVO-kDvAv6x4EtXWAlTIeaxzQ3KDBWxNV2CpDaE1QT7JF7a1BaYAG8qolkKYCYysFpZZEIS2lD_acjWupSS1-nLHlYX_ZnaLO2WevyF_vtnfhlK4i3qw3SZInmfjP-gDcZ07Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3098944746</pqid></control><display><type>article</type><title>SympGNNs: Symplectic Graph Neural Networks for identifiying high-dimensional Hamiltonian systems and node classification</title><source>Free E- Journals</source><creator>Varghese, Alan John ; Zhang, Zhen ; Karniadakis, George Em</creator><creatorcontrib>Varghese, Alan John ; Zhang, Zhen ; Karniadakis, George Em</creatorcontrib><description>Existing neural network models to learn Hamiltonian systems, such as SympNets, although accurate in low-dimensions, struggle to learn the correct dynamics for high-dimensional many-body systems. Herein, we introduce Symplectic Graph Neural Networks (SympGNNs) that can effectively handle system identification in high-dimensional Hamiltonian systems, as well as node classification. SympGNNs combines symplectic maps with permutation equivariance, a property of graph neural networks. Specifically, we propose two variants of SympGNNs: i) G-SympGNN and ii) LA-SympGNN, arising from different parameterizations of the kinetic and potential energy. We demonstrate the capabilities of SympGNN on two physical examples: a 40-particle coupled Harmonic oscillator, and a 2000-particle molecular dynamics simulation in a two-dimensional Lennard-Jones potential. Furthermore, we demonstrate the performance of SympGNN in the node classification task, achieving accuracy comparable to the state-of-the-art. We also empirically show that SympGNN can overcome the oversmoothing and heterophily problems, two key challenges in the field of graph neural networks.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Classification ; Graph neural networks ; Hamiltonian functions ; Harmonic oscillators ; Lennard-Jones potential ; Molecular dynamics ; Nodes ; Permutations ; Potential energy ; System identification</subject><ispartof>arXiv.org, 2024-08</ispartof><rights>2024. This work is published under http://creativecommons.org/licenses/by-nc-sa/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>776,780</link.rule.ids></links><search><creatorcontrib>Varghese, Alan John</creatorcontrib><creatorcontrib>Zhang, Zhen</creatorcontrib><creatorcontrib>Karniadakis, George Em</creatorcontrib><title>SympGNNs: Symplectic Graph Neural Networks for identifiying high-dimensional Hamiltonian systems and node classification</title><title>arXiv.org</title><description>Existing neural network models to learn Hamiltonian systems, such as SympNets, although accurate in low-dimensions, struggle to learn the correct dynamics for high-dimensional many-body systems. Herein, we introduce Symplectic Graph Neural Networks (SympGNNs) that can effectively handle system identification in high-dimensional Hamiltonian systems, as well as node classification. SympGNNs combines symplectic maps with permutation equivariance, a property of graph neural networks. Specifically, we propose two variants of SympGNNs: i) G-SympGNN and ii) LA-SympGNN, arising from different parameterizations of the kinetic and potential energy. We demonstrate the capabilities of SympGNN on two physical examples: a 40-particle coupled Harmonic oscillator, and a 2000-particle molecular dynamics simulation in a two-dimensional Lennard-Jones potential. Furthermore, we demonstrate the performance of SympGNN in the node classification task, achieving accuracy comparable to the state-of-the-art. We also empirically show that SympGNN can overcome the oversmoothing and heterophily problems, two key challenges in the field of graph neural networks.</description><subject>Classification</subject><subject>Graph neural networks</subject><subject>Hamiltonian functions</subject><subject>Harmonic oscillators</subject><subject>Lennard-Jones potential</subject><subject>Molecular dynamics</subject><subject>Nodes</subject><subject>Permutations</subject><subject>Potential energy</subject><subject>System identification</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNjMsKwjAQRYMgKOo_DLgu1KQPdSs-Vt3oXkKb2tE0qZkU7d8bwQ9wde7inDtiUy7EKlonnE_YgugexzHPcp6mYsre56HtjkVBW_gurUqPJRyd7BooVO-kDvAv6x4EtXWAlTIeaxzQ3KDBWxNV2CpDaE1QT7JF7a1BaYAG8qolkKYCYysFpZZEIS2lD_acjWupSS1-nLHlYX_ZnaLO2WevyF_vtnfhlK4i3qw3SZInmfjP-gDcZ07Q</recordid><startdate>20240829</startdate><enddate>20240829</enddate><creator>Varghese, Alan John</creator><creator>Zhang, Zhen</creator><creator>Karniadakis, George Em</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20240829</creationdate><title>SympGNNs: Symplectic Graph Neural Networks for identifiying high-dimensional Hamiltonian systems and node classification</title><author>Varghese, Alan John ; Zhang, Zhen ; Karniadakis, George Em</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_30989447463</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Classification</topic><topic>Graph neural networks</topic><topic>Hamiltonian functions</topic><topic>Harmonic oscillators</topic><topic>Lennard-Jones potential</topic><topic>Molecular dynamics</topic><topic>Nodes</topic><topic>Permutations</topic><topic>Potential energy</topic><topic>System identification</topic><toplevel>online_resources</toplevel><creatorcontrib>Varghese, Alan John</creatorcontrib><creatorcontrib>Zhang, Zhen</creatorcontrib><creatorcontrib>Karniadakis, George Em</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Varghese, Alan John</au><au>Zhang, Zhen</au><au>Karniadakis, George Em</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>SympGNNs: Symplectic Graph Neural Networks for identifiying high-dimensional Hamiltonian systems and node classification</atitle><jtitle>arXiv.org</jtitle><date>2024-08-29</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>Existing neural network models to learn Hamiltonian systems, such as SympNets, although accurate in low-dimensions, struggle to learn the correct dynamics for high-dimensional many-body systems. Herein, we introduce Symplectic Graph Neural Networks (SympGNNs) that can effectively handle system identification in high-dimensional Hamiltonian systems, as well as node classification. SympGNNs combines symplectic maps with permutation equivariance, a property of graph neural networks. Specifically, we propose two variants of SympGNNs: i) G-SympGNN and ii) LA-SympGNN, arising from different parameterizations of the kinetic and potential energy. We demonstrate the capabilities of SympGNN on two physical examples: a 40-particle coupled Harmonic oscillator, and a 2000-particle molecular dynamics simulation in a two-dimensional Lennard-Jones potential. Furthermore, we demonstrate the performance of SympGNN in the node classification task, achieving accuracy comparable to the state-of-the-art. We also empirically show that SympGNN can overcome the oversmoothing and heterophily problems, two key challenges in the field of graph neural networks.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2024-08 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_3098944746 |
source | Free E- Journals |
subjects | Classification Graph neural networks Hamiltonian functions Harmonic oscillators Lennard-Jones potential Molecular dynamics Nodes Permutations Potential energy System identification |
title | SympGNNs: Symplectic Graph Neural Networks for identifiying high-dimensional Hamiltonian systems and node classification |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T08%3A18%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=SympGNNs:%20Symplectic%20Graph%20Neural%20Networks%20for%20identifiying%20high-dimensional%20Hamiltonian%20systems%20and%20node%20classification&rft.jtitle=arXiv.org&rft.au=Varghese,%20Alan%20John&rft.date=2024-08-29&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E3098944746%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3098944746&rft_id=info:pmid/&rfr_iscdi=true |