Optimizing Automated Picking Systems in Warehouse Robots Using Machine Learning
With the rapid growth of global e-commerce, the demand for automation in the logistics industry is increasing. This study focuses on automated picking systems in warehouses, utilizing deep learning and reinforcement learning technologies to enhance picking efficiency and accuracy while reducing syst...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2024-08 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Li, Keqin Wang, Jin Wu, Xubo Peng, Xirui Chang, Runmian Deng, Xiaoyu Kang, Yiwen Yang, Yue Ni, Fanghao Hong, Bo |
description | With the rapid growth of global e-commerce, the demand for automation in the logistics industry is increasing. This study focuses on automated picking systems in warehouses, utilizing deep learning and reinforcement learning technologies to enhance picking efficiency and accuracy while reducing system failure rates. Through empirical analysis, we demonstrate the effectiveness of these technologies in improving robot picking performance and adaptability to complex environments. The results show that the integrated machine learning model significantly outperforms traditional methods, effectively addressing the challenges of peak order processing, reducing operational errors, and improving overall logistics efficiency. Additionally, by analyzing environmental factors, this study further optimizes system design to ensure efficient and stable operation under variable conditions. This research not only provides innovative solutions for logistics automation but also offers a theoretical and empirical foundation for future technological development and application. |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_3098942816</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3098942816</sourcerecordid><originalsourceid>FETCH-proquest_journals_30989428163</originalsourceid><addsrcrecordid>eNqNik8LgjAcQEcQJOV3GHQW5qamx4iiQ2H0h46ybOUsN9tvO9SnT6EP0OnBe2-APMpYGKQRpSPkA9SEEJrMaBwzD-V5a2UjP1Ld8dxZ3XArrngny0dvDm-wogEsFT5zIyrtQOC9vmgL-AT9seVlJZXAG8GN6sQEDW_8CcL_cYymq-VxsQ5ao19OgC1q7YzqUsFIlmYRTcOE_Xd9AT-8PtE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3098942816</pqid></control><display><type>article</type><title>Optimizing Automated Picking Systems in Warehouse Robots Using Machine Learning</title><source>Free E- Journals</source><creator>Li, Keqin ; Wang, Jin ; Wu, Xubo ; Peng, Xirui ; Chang, Runmian ; Deng, Xiaoyu ; Kang, Yiwen ; Yang, Yue ; Ni, Fanghao ; Hong, Bo</creator><creatorcontrib>Li, Keqin ; Wang, Jin ; Wu, Xubo ; Peng, Xirui ; Chang, Runmian ; Deng, Xiaoyu ; Kang, Yiwen ; Yang, Yue ; Ni, Fanghao ; Hong, Bo</creatorcontrib><description>With the rapid growth of global e-commerce, the demand for automation in the logistics industry is increasing. This study focuses on automated picking systems in warehouses, utilizing deep learning and reinforcement learning technologies to enhance picking efficiency and accuracy while reducing system failure rates. Through empirical analysis, we demonstrate the effectiveness of these technologies in improving robot picking performance and adaptability to complex environments. The results show that the integrated machine learning model significantly outperforms traditional methods, effectively addressing the challenges of peak order processing, reducing operational errors, and improving overall logistics efficiency. Additionally, by analyzing environmental factors, this study further optimizes system design to ensure efficient and stable operation under variable conditions. This research not only provides innovative solutions for logistics automation but also offers a theoretical and empirical foundation for future technological development and application.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Automation ; Deep learning ; Demand analysis ; Design factors ; Empirical analysis ; Error reduction ; Failure rates ; Industrial robots ; Logistics ; Machine learning ; Order picking ; Order processing ; Systems design ; Warehouses</subject><ispartof>arXiv.org, 2024-08</ispartof><rights>2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>Li, Keqin</creatorcontrib><creatorcontrib>Wang, Jin</creatorcontrib><creatorcontrib>Wu, Xubo</creatorcontrib><creatorcontrib>Peng, Xirui</creatorcontrib><creatorcontrib>Chang, Runmian</creatorcontrib><creatorcontrib>Deng, Xiaoyu</creatorcontrib><creatorcontrib>Kang, Yiwen</creatorcontrib><creatorcontrib>Yang, Yue</creatorcontrib><creatorcontrib>Ni, Fanghao</creatorcontrib><creatorcontrib>Hong, Bo</creatorcontrib><title>Optimizing Automated Picking Systems in Warehouse Robots Using Machine Learning</title><title>arXiv.org</title><description>With the rapid growth of global e-commerce, the demand for automation in the logistics industry is increasing. This study focuses on automated picking systems in warehouses, utilizing deep learning and reinforcement learning technologies to enhance picking efficiency and accuracy while reducing system failure rates. Through empirical analysis, we demonstrate the effectiveness of these technologies in improving robot picking performance and adaptability to complex environments. The results show that the integrated machine learning model significantly outperforms traditional methods, effectively addressing the challenges of peak order processing, reducing operational errors, and improving overall logistics efficiency. Additionally, by analyzing environmental factors, this study further optimizes system design to ensure efficient and stable operation under variable conditions. This research not only provides innovative solutions for logistics automation but also offers a theoretical and empirical foundation for future technological development and application.</description><subject>Automation</subject><subject>Deep learning</subject><subject>Demand analysis</subject><subject>Design factors</subject><subject>Empirical analysis</subject><subject>Error reduction</subject><subject>Failure rates</subject><subject>Industrial robots</subject><subject>Logistics</subject><subject>Machine learning</subject><subject>Order picking</subject><subject>Order processing</subject><subject>Systems design</subject><subject>Warehouses</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNik8LgjAcQEcQJOV3GHQW5qamx4iiQ2H0h46ybOUsN9tvO9SnT6EP0OnBe2-APMpYGKQRpSPkA9SEEJrMaBwzD-V5a2UjP1Ld8dxZ3XArrngny0dvDm-wogEsFT5zIyrtQOC9vmgL-AT9seVlJZXAG8GN6sQEDW_8CcL_cYymq-VxsQ5ao19OgC1q7YzqUsFIlmYRTcOE_Xd9AT-8PtE</recordid><startdate>20240829</startdate><enddate>20240829</enddate><creator>Li, Keqin</creator><creator>Wang, Jin</creator><creator>Wu, Xubo</creator><creator>Peng, Xirui</creator><creator>Chang, Runmian</creator><creator>Deng, Xiaoyu</creator><creator>Kang, Yiwen</creator><creator>Yang, Yue</creator><creator>Ni, Fanghao</creator><creator>Hong, Bo</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20240829</creationdate><title>Optimizing Automated Picking Systems in Warehouse Robots Using Machine Learning</title><author>Li, Keqin ; Wang, Jin ; Wu, Xubo ; Peng, Xirui ; Chang, Runmian ; Deng, Xiaoyu ; Kang, Yiwen ; Yang, Yue ; Ni, Fanghao ; Hong, Bo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_30989428163</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Automation</topic><topic>Deep learning</topic><topic>Demand analysis</topic><topic>Design factors</topic><topic>Empirical analysis</topic><topic>Error reduction</topic><topic>Failure rates</topic><topic>Industrial robots</topic><topic>Logistics</topic><topic>Machine learning</topic><topic>Order picking</topic><topic>Order processing</topic><topic>Systems design</topic><topic>Warehouses</topic><toplevel>online_resources</toplevel><creatorcontrib>Li, Keqin</creatorcontrib><creatorcontrib>Wang, Jin</creatorcontrib><creatorcontrib>Wu, Xubo</creatorcontrib><creatorcontrib>Peng, Xirui</creatorcontrib><creatorcontrib>Chang, Runmian</creatorcontrib><creatorcontrib>Deng, Xiaoyu</creatorcontrib><creatorcontrib>Kang, Yiwen</creatorcontrib><creatorcontrib>Yang, Yue</creatorcontrib><creatorcontrib>Ni, Fanghao</creatorcontrib><creatorcontrib>Hong, Bo</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Keqin</au><au>Wang, Jin</au><au>Wu, Xubo</au><au>Peng, Xirui</au><au>Chang, Runmian</au><au>Deng, Xiaoyu</au><au>Kang, Yiwen</au><au>Yang, Yue</au><au>Ni, Fanghao</au><au>Hong, Bo</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Optimizing Automated Picking Systems in Warehouse Robots Using Machine Learning</atitle><jtitle>arXiv.org</jtitle><date>2024-08-29</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>With the rapid growth of global e-commerce, the demand for automation in the logistics industry is increasing. This study focuses on automated picking systems in warehouses, utilizing deep learning and reinforcement learning technologies to enhance picking efficiency and accuracy while reducing system failure rates. Through empirical analysis, we demonstrate the effectiveness of these technologies in improving robot picking performance and adaptability to complex environments. The results show that the integrated machine learning model significantly outperforms traditional methods, effectively addressing the challenges of peak order processing, reducing operational errors, and improving overall logistics efficiency. Additionally, by analyzing environmental factors, this study further optimizes system design to ensure efficient and stable operation under variable conditions. This research not only provides innovative solutions for logistics automation but also offers a theoretical and empirical foundation for future technological development and application.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2024-08 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_3098942816 |
source | Free E- Journals |
subjects | Automation Deep learning Demand analysis Design factors Empirical analysis Error reduction Failure rates Industrial robots Logistics Machine learning Order picking Order processing Systems design Warehouses |
title | Optimizing Automated Picking Systems in Warehouse Robots Using Machine Learning |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T12%3A58%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Optimizing%20Automated%20Picking%20Systems%20in%20Warehouse%20Robots%20Using%20Machine%20Learning&rft.jtitle=arXiv.org&rft.au=Li,%20Keqin&rft.date=2024-08-29&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E3098942816%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3098942816&rft_id=info:pmid/&rfr_iscdi=true |