Optimizing Automated Picking Systems in Warehouse Robots Using Machine Learning

With the rapid growth of global e-commerce, the demand for automation in the logistics industry is increasing. This study focuses on automated picking systems in warehouses, utilizing deep learning and reinforcement learning technologies to enhance picking efficiency and accuracy while reducing syst...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2024-08
Hauptverfasser: Li, Keqin, Wang, Jin, Wu, Xubo, Peng, Xirui, Chang, Runmian, Deng, Xiaoyu, Kang, Yiwen, Yang, Yue, Ni, Fanghao, Hong, Bo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Li, Keqin
Wang, Jin
Wu, Xubo
Peng, Xirui
Chang, Runmian
Deng, Xiaoyu
Kang, Yiwen
Yang, Yue
Ni, Fanghao
Hong, Bo
description With the rapid growth of global e-commerce, the demand for automation in the logistics industry is increasing. This study focuses on automated picking systems in warehouses, utilizing deep learning and reinforcement learning technologies to enhance picking efficiency and accuracy while reducing system failure rates. Through empirical analysis, we demonstrate the effectiveness of these technologies in improving robot picking performance and adaptability to complex environments. The results show that the integrated machine learning model significantly outperforms traditional methods, effectively addressing the challenges of peak order processing, reducing operational errors, and improving overall logistics efficiency. Additionally, by analyzing environmental factors, this study further optimizes system design to ensure efficient and stable operation under variable conditions. This research not only provides innovative solutions for logistics automation but also offers a theoretical and empirical foundation for future technological development and application.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_3098942816</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3098942816</sourcerecordid><originalsourceid>FETCH-proquest_journals_30989428163</originalsourceid><addsrcrecordid>eNqNik8LgjAcQEcQJOV3GHQW5qamx4iiQ2H0h46ybOUsN9tvO9SnT6EP0OnBe2-APMpYGKQRpSPkA9SEEJrMaBwzD-V5a2UjP1Ld8dxZ3XArrngny0dvDm-wogEsFT5zIyrtQOC9vmgL-AT9seVlJZXAG8GN6sQEDW_8CcL_cYymq-VxsQ5ao19OgC1q7YzqUsFIlmYRTcOE_Xd9AT-8PtE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3098942816</pqid></control><display><type>article</type><title>Optimizing Automated Picking Systems in Warehouse Robots Using Machine Learning</title><source>Free E- Journals</source><creator>Li, Keqin ; Wang, Jin ; Wu, Xubo ; Peng, Xirui ; Chang, Runmian ; Deng, Xiaoyu ; Kang, Yiwen ; Yang, Yue ; Ni, Fanghao ; Hong, Bo</creator><creatorcontrib>Li, Keqin ; Wang, Jin ; Wu, Xubo ; Peng, Xirui ; Chang, Runmian ; Deng, Xiaoyu ; Kang, Yiwen ; Yang, Yue ; Ni, Fanghao ; Hong, Bo</creatorcontrib><description>With the rapid growth of global e-commerce, the demand for automation in the logistics industry is increasing. This study focuses on automated picking systems in warehouses, utilizing deep learning and reinforcement learning technologies to enhance picking efficiency and accuracy while reducing system failure rates. Through empirical analysis, we demonstrate the effectiveness of these technologies in improving robot picking performance and adaptability to complex environments. The results show that the integrated machine learning model significantly outperforms traditional methods, effectively addressing the challenges of peak order processing, reducing operational errors, and improving overall logistics efficiency. Additionally, by analyzing environmental factors, this study further optimizes system design to ensure efficient and stable operation under variable conditions. This research not only provides innovative solutions for logistics automation but also offers a theoretical and empirical foundation for future technological development and application.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Automation ; Deep learning ; Demand analysis ; Design factors ; Empirical analysis ; Error reduction ; Failure rates ; Industrial robots ; Logistics ; Machine learning ; Order picking ; Order processing ; Systems design ; Warehouses</subject><ispartof>arXiv.org, 2024-08</ispartof><rights>2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>Li, Keqin</creatorcontrib><creatorcontrib>Wang, Jin</creatorcontrib><creatorcontrib>Wu, Xubo</creatorcontrib><creatorcontrib>Peng, Xirui</creatorcontrib><creatorcontrib>Chang, Runmian</creatorcontrib><creatorcontrib>Deng, Xiaoyu</creatorcontrib><creatorcontrib>Kang, Yiwen</creatorcontrib><creatorcontrib>Yang, Yue</creatorcontrib><creatorcontrib>Ni, Fanghao</creatorcontrib><creatorcontrib>Hong, Bo</creatorcontrib><title>Optimizing Automated Picking Systems in Warehouse Robots Using Machine Learning</title><title>arXiv.org</title><description>With the rapid growth of global e-commerce, the demand for automation in the logistics industry is increasing. This study focuses on automated picking systems in warehouses, utilizing deep learning and reinforcement learning technologies to enhance picking efficiency and accuracy while reducing system failure rates. Through empirical analysis, we demonstrate the effectiveness of these technologies in improving robot picking performance and adaptability to complex environments. The results show that the integrated machine learning model significantly outperforms traditional methods, effectively addressing the challenges of peak order processing, reducing operational errors, and improving overall logistics efficiency. Additionally, by analyzing environmental factors, this study further optimizes system design to ensure efficient and stable operation under variable conditions. This research not only provides innovative solutions for logistics automation but also offers a theoretical and empirical foundation for future technological development and application.</description><subject>Automation</subject><subject>Deep learning</subject><subject>Demand analysis</subject><subject>Design factors</subject><subject>Empirical analysis</subject><subject>Error reduction</subject><subject>Failure rates</subject><subject>Industrial robots</subject><subject>Logistics</subject><subject>Machine learning</subject><subject>Order picking</subject><subject>Order processing</subject><subject>Systems design</subject><subject>Warehouses</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNik8LgjAcQEcQJOV3GHQW5qamx4iiQ2H0h46ybOUsN9tvO9SnT6EP0OnBe2-APMpYGKQRpSPkA9SEEJrMaBwzD-V5a2UjP1Ld8dxZ3XArrngny0dvDm-wogEsFT5zIyrtQOC9vmgL-AT9seVlJZXAG8GN6sQEDW_8CcL_cYymq-VxsQ5ao19OgC1q7YzqUsFIlmYRTcOE_Xd9AT-8PtE</recordid><startdate>20240829</startdate><enddate>20240829</enddate><creator>Li, Keqin</creator><creator>Wang, Jin</creator><creator>Wu, Xubo</creator><creator>Peng, Xirui</creator><creator>Chang, Runmian</creator><creator>Deng, Xiaoyu</creator><creator>Kang, Yiwen</creator><creator>Yang, Yue</creator><creator>Ni, Fanghao</creator><creator>Hong, Bo</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20240829</creationdate><title>Optimizing Automated Picking Systems in Warehouse Robots Using Machine Learning</title><author>Li, Keqin ; Wang, Jin ; Wu, Xubo ; Peng, Xirui ; Chang, Runmian ; Deng, Xiaoyu ; Kang, Yiwen ; Yang, Yue ; Ni, Fanghao ; Hong, Bo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_30989428163</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Automation</topic><topic>Deep learning</topic><topic>Demand analysis</topic><topic>Design factors</topic><topic>Empirical analysis</topic><topic>Error reduction</topic><topic>Failure rates</topic><topic>Industrial robots</topic><topic>Logistics</topic><topic>Machine learning</topic><topic>Order picking</topic><topic>Order processing</topic><topic>Systems design</topic><topic>Warehouses</topic><toplevel>online_resources</toplevel><creatorcontrib>Li, Keqin</creatorcontrib><creatorcontrib>Wang, Jin</creatorcontrib><creatorcontrib>Wu, Xubo</creatorcontrib><creatorcontrib>Peng, Xirui</creatorcontrib><creatorcontrib>Chang, Runmian</creatorcontrib><creatorcontrib>Deng, Xiaoyu</creatorcontrib><creatorcontrib>Kang, Yiwen</creatorcontrib><creatorcontrib>Yang, Yue</creatorcontrib><creatorcontrib>Ni, Fanghao</creatorcontrib><creatorcontrib>Hong, Bo</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Keqin</au><au>Wang, Jin</au><au>Wu, Xubo</au><au>Peng, Xirui</au><au>Chang, Runmian</au><au>Deng, Xiaoyu</au><au>Kang, Yiwen</au><au>Yang, Yue</au><au>Ni, Fanghao</au><au>Hong, Bo</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Optimizing Automated Picking Systems in Warehouse Robots Using Machine Learning</atitle><jtitle>arXiv.org</jtitle><date>2024-08-29</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>With the rapid growth of global e-commerce, the demand for automation in the logistics industry is increasing. This study focuses on automated picking systems in warehouses, utilizing deep learning and reinforcement learning technologies to enhance picking efficiency and accuracy while reducing system failure rates. Through empirical analysis, we demonstrate the effectiveness of these technologies in improving robot picking performance and adaptability to complex environments. The results show that the integrated machine learning model significantly outperforms traditional methods, effectively addressing the challenges of peak order processing, reducing operational errors, and improving overall logistics efficiency. Additionally, by analyzing environmental factors, this study further optimizes system design to ensure efficient and stable operation under variable conditions. This research not only provides innovative solutions for logistics automation but also offers a theoretical and empirical foundation for future technological development and application.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2024-08
issn 2331-8422
language eng
recordid cdi_proquest_journals_3098942816
source Free E- Journals
subjects Automation
Deep learning
Demand analysis
Design factors
Empirical analysis
Error reduction
Failure rates
Industrial robots
Logistics
Machine learning
Order picking
Order processing
Systems design
Warehouses
title Optimizing Automated Picking Systems in Warehouse Robots Using Machine Learning
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T12%3A58%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Optimizing%20Automated%20Picking%20Systems%20in%20Warehouse%20Robots%20Using%20Machine%20Learning&rft.jtitle=arXiv.org&rft.au=Li,%20Keqin&rft.date=2024-08-29&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E3098942816%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3098942816&rft_id=info:pmid/&rfr_iscdi=true