CogVLM2: Visual Language Models for Image and Video Understanding
Beginning with VisualGLM and CogVLM, we are continuously exploring VLMs in pursuit of enhanced vision-language fusion, efficient higher-resolution architecture, and broader modalities and applications. Here we propose the CogVLM2 family, a new generation of visual language models for image and video...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2024-08 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Hong, Wenyi Wang, Weihan Ding, Ming Yu, Wenmeng Lv, Qingsong Wang, Yan Cheng, Yean Huang, Shiyu Ji, Junhui Zhao, Xue Zhao, Lei Yang, Zhuoyi Gu, Xiaotao Zhang, Xiaohan Feng, Guanyu Yin, Da Wang, Zihan Ji Qi Song, Xixuan Zhang, Peng Liu, Debing Xu, Bin Li, Juanzi Dong, Yuxiao Tang, Jie |
description | Beginning with VisualGLM and CogVLM, we are continuously exploring VLMs in pursuit of enhanced vision-language fusion, efficient higher-resolution architecture, and broader modalities and applications. Here we propose the CogVLM2 family, a new generation of visual language models for image and video understanding including CogVLM2, CogVLM2-Video and GLM-4V. As an image understanding model, CogVLM2 inherits the visual expert architecture with improved training recipes in both pre-training and post-training stages, supporting input resolution up to \(1344 \times 1344\) pixels. As a video understanding model, CogVLM2-Video integrates multi-frame input with timestamps and proposes automated temporal grounding data construction. Notably, CogVLM2 family has achieved state-of-the-art results on benchmarks like MMBench, MM-Vet, TextVQA, MVBench and VCGBench. All models are open-sourced in https://github.com/THUDM/CogVLM2 and https://github.com/THUDM/GLM-4, contributing to the advancement of the field. |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_3098942810</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3098942810</sourcerecordid><originalsourceid>FETCH-proquest_journals_30989428103</originalsourceid><addsrcrecordid>eNqNitEKgjAUQEcQJOU_DHoW5p2W9hZSFOhb-iqDzaGsrXbd_2fQB_R04JyzIhFwniZFBrAhMeLEGIPDEfKcR-RcOd3VDZxoN2IQhtbC6iC0oo2TyiAdnKf351cIK5dJKkdbK5XHeRGj1TuyHoRBFf-4Jfvr5VHdkpd376Bw7icXvF1Sz1lZlBkUKeP_XR_Imjg4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3098942810</pqid></control><display><type>article</type><title>CogVLM2: Visual Language Models for Image and Video Understanding</title><source>Free E- Journals</source><creator>Hong, Wenyi ; Wang, Weihan ; Ding, Ming ; Yu, Wenmeng ; Lv, Qingsong ; Wang, Yan ; Cheng, Yean ; Huang, Shiyu ; Ji, Junhui ; Zhao, Xue ; Zhao, Lei ; Yang, Zhuoyi ; Gu, Xiaotao ; Zhang, Xiaohan ; Feng, Guanyu ; Yin, Da ; Wang, Zihan ; Ji Qi ; Song, Xixuan ; Zhang, Peng ; Liu, Debing ; Xu, Bin ; Li, Juanzi ; Dong, Yuxiao ; Tang, Jie</creator><creatorcontrib>Hong, Wenyi ; Wang, Weihan ; Ding, Ming ; Yu, Wenmeng ; Lv, Qingsong ; Wang, Yan ; Cheng, Yean ; Huang, Shiyu ; Ji, Junhui ; Zhao, Xue ; Zhao, Lei ; Yang, Zhuoyi ; Gu, Xiaotao ; Zhang, Xiaohan ; Feng, Guanyu ; Yin, Da ; Wang, Zihan ; Ji Qi ; Song, Xixuan ; Zhang, Peng ; Liu, Debing ; Xu, Bin ; Li, Juanzi ; Dong, Yuxiao ; Tang, Jie</creatorcontrib><description>Beginning with VisualGLM and CogVLM, we are continuously exploring VLMs in pursuit of enhanced vision-language fusion, efficient higher-resolution architecture, and broader modalities and applications. Here we propose the CogVLM2 family, a new generation of visual language models for image and video understanding including CogVLM2, CogVLM2-Video and GLM-4V. As an image understanding model, CogVLM2 inherits the visual expert architecture with improved training recipes in both pre-training and post-training stages, supporting input resolution up to \(1344 \times 1344\) pixels. As a video understanding model, CogVLM2-Video integrates multi-frame input with timestamps and proposes automated temporal grounding data construction. Notably, CogVLM2 family has achieved state-of-the-art results on benchmarks like MMBench, MM-Vet, TextVQA, MVBench and VCGBench. All models are open-sourced in https://github.com/THUDM/CogVLM2 and https://github.com/THUDM/GLM-4, contributing to the advancement of the field.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Enhanced vision ; Image enhancement</subject><ispartof>arXiv.org, 2024-08</ispartof><rights>2024. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>776,780</link.rule.ids></links><search><creatorcontrib>Hong, Wenyi</creatorcontrib><creatorcontrib>Wang, Weihan</creatorcontrib><creatorcontrib>Ding, Ming</creatorcontrib><creatorcontrib>Yu, Wenmeng</creatorcontrib><creatorcontrib>Lv, Qingsong</creatorcontrib><creatorcontrib>Wang, Yan</creatorcontrib><creatorcontrib>Cheng, Yean</creatorcontrib><creatorcontrib>Huang, Shiyu</creatorcontrib><creatorcontrib>Ji, Junhui</creatorcontrib><creatorcontrib>Zhao, Xue</creatorcontrib><creatorcontrib>Zhao, Lei</creatorcontrib><creatorcontrib>Yang, Zhuoyi</creatorcontrib><creatorcontrib>Gu, Xiaotao</creatorcontrib><creatorcontrib>Zhang, Xiaohan</creatorcontrib><creatorcontrib>Feng, Guanyu</creatorcontrib><creatorcontrib>Yin, Da</creatorcontrib><creatorcontrib>Wang, Zihan</creatorcontrib><creatorcontrib>Ji Qi</creatorcontrib><creatorcontrib>Song, Xixuan</creatorcontrib><creatorcontrib>Zhang, Peng</creatorcontrib><creatorcontrib>Liu, Debing</creatorcontrib><creatorcontrib>Xu, Bin</creatorcontrib><creatorcontrib>Li, Juanzi</creatorcontrib><creatorcontrib>Dong, Yuxiao</creatorcontrib><creatorcontrib>Tang, Jie</creatorcontrib><title>CogVLM2: Visual Language Models for Image and Video Understanding</title><title>arXiv.org</title><description>Beginning with VisualGLM and CogVLM, we are continuously exploring VLMs in pursuit of enhanced vision-language fusion, efficient higher-resolution architecture, and broader modalities and applications. Here we propose the CogVLM2 family, a new generation of visual language models for image and video understanding including CogVLM2, CogVLM2-Video and GLM-4V. As an image understanding model, CogVLM2 inherits the visual expert architecture with improved training recipes in both pre-training and post-training stages, supporting input resolution up to \(1344 \times 1344\) pixels. As a video understanding model, CogVLM2-Video integrates multi-frame input with timestamps and proposes automated temporal grounding data construction. Notably, CogVLM2 family has achieved state-of-the-art results on benchmarks like MMBench, MM-Vet, TextVQA, MVBench and VCGBench. All models are open-sourced in https://github.com/THUDM/CogVLM2 and https://github.com/THUDM/GLM-4, contributing to the advancement of the field.</description><subject>Enhanced vision</subject><subject>Image enhancement</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNqNitEKgjAUQEcQJOU_DHoW5p2W9hZSFOhb-iqDzaGsrXbd_2fQB_R04JyzIhFwniZFBrAhMeLEGIPDEfKcR-RcOd3VDZxoN2IQhtbC6iC0oo2TyiAdnKf351cIK5dJKkdbK5XHeRGj1TuyHoRBFf-4Jfvr5VHdkpd376Bw7icXvF1Sz1lZlBkUKeP_XR_Imjg4</recordid><startdate>20240829</startdate><enddate>20240829</enddate><creator>Hong, Wenyi</creator><creator>Wang, Weihan</creator><creator>Ding, Ming</creator><creator>Yu, Wenmeng</creator><creator>Lv, Qingsong</creator><creator>Wang, Yan</creator><creator>Cheng, Yean</creator><creator>Huang, Shiyu</creator><creator>Ji, Junhui</creator><creator>Zhao, Xue</creator><creator>Zhao, Lei</creator><creator>Yang, Zhuoyi</creator><creator>Gu, Xiaotao</creator><creator>Zhang, Xiaohan</creator><creator>Feng, Guanyu</creator><creator>Yin, Da</creator><creator>Wang, Zihan</creator><creator>Ji Qi</creator><creator>Song, Xixuan</creator><creator>Zhang, Peng</creator><creator>Liu, Debing</creator><creator>Xu, Bin</creator><creator>Li, Juanzi</creator><creator>Dong, Yuxiao</creator><creator>Tang, Jie</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20240829</creationdate><title>CogVLM2: Visual Language Models for Image and Video Understanding</title><author>Hong, Wenyi ; Wang, Weihan ; Ding, Ming ; Yu, Wenmeng ; Lv, Qingsong ; Wang, Yan ; Cheng, Yean ; Huang, Shiyu ; Ji, Junhui ; Zhao, Xue ; Zhao, Lei ; Yang, Zhuoyi ; Gu, Xiaotao ; Zhang, Xiaohan ; Feng, Guanyu ; Yin, Da ; Wang, Zihan ; Ji Qi ; Song, Xixuan ; Zhang, Peng ; Liu, Debing ; Xu, Bin ; Li, Juanzi ; Dong, Yuxiao ; Tang, Jie</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_30989428103</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Enhanced vision</topic><topic>Image enhancement</topic><toplevel>online_resources</toplevel><creatorcontrib>Hong, Wenyi</creatorcontrib><creatorcontrib>Wang, Weihan</creatorcontrib><creatorcontrib>Ding, Ming</creatorcontrib><creatorcontrib>Yu, Wenmeng</creatorcontrib><creatorcontrib>Lv, Qingsong</creatorcontrib><creatorcontrib>Wang, Yan</creatorcontrib><creatorcontrib>Cheng, Yean</creatorcontrib><creatorcontrib>Huang, Shiyu</creatorcontrib><creatorcontrib>Ji, Junhui</creatorcontrib><creatorcontrib>Zhao, Xue</creatorcontrib><creatorcontrib>Zhao, Lei</creatorcontrib><creatorcontrib>Yang, Zhuoyi</creatorcontrib><creatorcontrib>Gu, Xiaotao</creatorcontrib><creatorcontrib>Zhang, Xiaohan</creatorcontrib><creatorcontrib>Feng, Guanyu</creatorcontrib><creatorcontrib>Yin, Da</creatorcontrib><creatorcontrib>Wang, Zihan</creatorcontrib><creatorcontrib>Ji Qi</creatorcontrib><creatorcontrib>Song, Xixuan</creatorcontrib><creatorcontrib>Zhang, Peng</creatorcontrib><creatorcontrib>Liu, Debing</creatorcontrib><creatorcontrib>Xu, Bin</creatorcontrib><creatorcontrib>Li, Juanzi</creatorcontrib><creatorcontrib>Dong, Yuxiao</creatorcontrib><creatorcontrib>Tang, Jie</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hong, Wenyi</au><au>Wang, Weihan</au><au>Ding, Ming</au><au>Yu, Wenmeng</au><au>Lv, Qingsong</au><au>Wang, Yan</au><au>Cheng, Yean</au><au>Huang, Shiyu</au><au>Ji, Junhui</au><au>Zhao, Xue</au><au>Zhao, Lei</au><au>Yang, Zhuoyi</au><au>Gu, Xiaotao</au><au>Zhang, Xiaohan</au><au>Feng, Guanyu</au><au>Yin, Da</au><au>Wang, Zihan</au><au>Ji Qi</au><au>Song, Xixuan</au><au>Zhang, Peng</au><au>Liu, Debing</au><au>Xu, Bin</au><au>Li, Juanzi</au><au>Dong, Yuxiao</au><au>Tang, Jie</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>CogVLM2: Visual Language Models for Image and Video Understanding</atitle><jtitle>arXiv.org</jtitle><date>2024-08-29</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>Beginning with VisualGLM and CogVLM, we are continuously exploring VLMs in pursuit of enhanced vision-language fusion, efficient higher-resolution architecture, and broader modalities and applications. Here we propose the CogVLM2 family, a new generation of visual language models for image and video understanding including CogVLM2, CogVLM2-Video and GLM-4V. As an image understanding model, CogVLM2 inherits the visual expert architecture with improved training recipes in both pre-training and post-training stages, supporting input resolution up to \(1344 \times 1344\) pixels. As a video understanding model, CogVLM2-Video integrates multi-frame input with timestamps and proposes automated temporal grounding data construction. Notably, CogVLM2 family has achieved state-of-the-art results on benchmarks like MMBench, MM-Vet, TextVQA, MVBench and VCGBench. All models are open-sourced in https://github.com/THUDM/CogVLM2 and https://github.com/THUDM/GLM-4, contributing to the advancement of the field.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2024-08 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_3098942810 |
source | Free E- Journals |
subjects | Enhanced vision Image enhancement |
title | CogVLM2: Visual Language Models for Image and Video Understanding |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T23%3A34%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=CogVLM2:%20Visual%20Language%20Models%20for%20Image%20and%20Video%20Understanding&rft.jtitle=arXiv.org&rft.au=Hong,%20Wenyi&rft.date=2024-08-29&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E3098942810%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3098942810&rft_id=info:pmid/&rfr_iscdi=true |