Using unsupervised learning methods to group African countries based on COVID-19 prevalence
The purpose of this paper is to prepare the most commonly used cluster analysis; hierarchical and non-hierarchical cluster analysis algorithms which are the K-means, the Partition Around Medoids (PAM) and the agglomerative hierarchical, to group 37 African countries on the basis of measures of COVID...
Gespeichert in:
Hauptverfasser: | , , , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 1 |
container_start_page | |
container_title | |
container_volume | 3161 |
creator | Osi, A. A. Usman, A. Auwal, S. T. Ibrahim, M. A. Jacqueline, L. |
description | The purpose of this paper is to prepare the most commonly used cluster analysis; hierarchical and non-hierarchical cluster analysis algorithms which are the K-means, the Partition Around Medoids (PAM) and the agglomerative hierarchical, to group 37 African countries on the basis of measures of COVID-19 cases, economic development and general health resources. We found that the optimum number of clusters is four and countries like Morocco, Algeria, Libya, Gabon, Botswana, Tunisia, Mauritius, and Seychelles are grouped together into one cluster, and how Egypt and South Africa formed another cluster. A Hierarchical clustering was found to be more precise compared to the other two algorithms. |
doi_str_mv | 10.1063/5.0229594 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_proquest_journals_3098898395</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3098898395</sourcerecordid><originalsourceid>FETCH-LOGICAL-p634-f5a67976042c95c5d83ba5c81326b421d5b4b2a3164b11e36e0f85e19f113e93</originalsourceid><addsrcrecordid>eNotkEtLAzEcxIMoWKsHv0HAm7A1_7x2cyz1VSj04APBQ8hmszWlTdZkt-C3t6U9DQy_mYFB6BbIBIhkD2JCKFVC8TM0AiGgKCXIczQiRPGCcvZ1ia5yXhNCVVlWI_T9kX1Y4SHkoXNp57Nr8MaZFA7u1vU_scm4j3iV4tDhaZu8NQHbOIQ-eZdxbQ6JGPBs-Tl_LEDhLrmd2bhg3TW6aM0mu5uTjtHb89P77LVYLF_ms-mi6CTjRSuMLFUpCadWCSuaitVG2AoYlTWn0Iia19QwkLwGcEw60lbCgWoBmFNsjO6OrV2Kv4PLvV7HIYX9oGZEVZWqmBJ76v5IZet70_sYdJf81qQ_DUQfrtNCn65j_9cIX4M</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype><pqid>3098898395</pqid></control><display><type>conference_proceeding</type><title>Using unsupervised learning methods to group African countries based on COVID-19 prevalence</title><source>AIP Journals Complete</source><creator>Osi, A. A. ; Usman, A. ; Auwal, S. T. ; Ibrahim, M. A. ; Jacqueline, L.</creator><contributor>Cheong, Alexander Chee Hon ; Perumal, Sathish Kumar Selva ; Yong, Lau Chee ; Sivanesan, Siva Kumar ; Thiruchelvam, Vinesh ; Nataraj, Chandrasekharan</contributor><creatorcontrib>Osi, A. A. ; Usman, A. ; Auwal, S. T. ; Ibrahim, M. A. ; Jacqueline, L. ; Cheong, Alexander Chee Hon ; Perumal, Sathish Kumar Selva ; Yong, Lau Chee ; Sivanesan, Siva Kumar ; Thiruchelvam, Vinesh ; Nataraj, Chandrasekharan</creatorcontrib><description>The purpose of this paper is to prepare the most commonly used cluster analysis; hierarchical and non-hierarchical cluster analysis algorithms which are the K-means, the Partition Around Medoids (PAM) and the agglomerative hierarchical, to group 37 African countries on the basis of measures of COVID-19 cases, economic development and general health resources. We found that the optimum number of clusters is four and countries like Morocco, Algeria, Libya, Gabon, Botswana, Tunisia, Mauritius, and Seychelles are grouped together into one cluster, and how Egypt and South Africa formed another cluster. A Hierarchical clustering was found to be more precise compared to the other two algorithms.</description><identifier>ISSN: 0094-243X</identifier><identifier>EISSN: 1551-7616</identifier><identifier>DOI: 10.1063/5.0229594</identifier><identifier>CODEN: APCPCS</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Algorithms ; Cluster analysis ; Clustering ; Economic development ; Machine learning ; Unsupervised learning</subject><ispartof>AIP conference proceedings, 2024, Vol.3161 (1)</ispartof><rights>Author(s)</rights><rights>2024 Author(s). Published under an exclusive license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/acp/article-lookup/doi/10.1063/5.0229594$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>309,310,314,776,780,785,786,790,4498,23909,23910,25118,27901,27902,76353</link.rule.ids></links><search><contributor>Cheong, Alexander Chee Hon</contributor><contributor>Perumal, Sathish Kumar Selva</contributor><contributor>Yong, Lau Chee</contributor><contributor>Sivanesan, Siva Kumar</contributor><contributor>Thiruchelvam, Vinesh</contributor><contributor>Nataraj, Chandrasekharan</contributor><creatorcontrib>Osi, A. A.</creatorcontrib><creatorcontrib>Usman, A.</creatorcontrib><creatorcontrib>Auwal, S. T.</creatorcontrib><creatorcontrib>Ibrahim, M. A.</creatorcontrib><creatorcontrib>Jacqueline, L.</creatorcontrib><title>Using unsupervised learning methods to group African countries based on COVID-19 prevalence</title><title>AIP conference proceedings</title><description>The purpose of this paper is to prepare the most commonly used cluster analysis; hierarchical and non-hierarchical cluster analysis algorithms which are the K-means, the Partition Around Medoids (PAM) and the agglomerative hierarchical, to group 37 African countries on the basis of measures of COVID-19 cases, economic development and general health resources. We found that the optimum number of clusters is four and countries like Morocco, Algeria, Libya, Gabon, Botswana, Tunisia, Mauritius, and Seychelles are grouped together into one cluster, and how Egypt and South Africa formed another cluster. A Hierarchical clustering was found to be more precise compared to the other two algorithms.</description><subject>Algorithms</subject><subject>Cluster analysis</subject><subject>Clustering</subject><subject>Economic development</subject><subject>Machine learning</subject><subject>Unsupervised learning</subject><issn>0094-243X</issn><issn>1551-7616</issn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2024</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNotkEtLAzEcxIMoWKsHv0HAm7A1_7x2cyz1VSj04APBQ8hmszWlTdZkt-C3t6U9DQy_mYFB6BbIBIhkD2JCKFVC8TM0AiGgKCXIczQiRPGCcvZ1ia5yXhNCVVlWI_T9kX1Y4SHkoXNp57Nr8MaZFA7u1vU_scm4j3iV4tDhaZu8NQHbOIQ-eZdxbQ6JGPBs-Tl_LEDhLrmd2bhg3TW6aM0mu5uTjtHb89P77LVYLF_ms-mi6CTjRSuMLFUpCadWCSuaitVG2AoYlTWn0Iia19QwkLwGcEw60lbCgWoBmFNsjO6OrV2Kv4PLvV7HIYX9oGZEVZWqmBJ76v5IZet70_sYdJf81qQ_DUQfrtNCn65j_9cIX4M</recordid><startdate>20240830</startdate><enddate>20240830</enddate><creator>Osi, A. A.</creator><creator>Usman, A.</creator><creator>Auwal, S. T.</creator><creator>Ibrahim, M. A.</creator><creator>Jacqueline, L.</creator><general>American Institute of Physics</general><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20240830</creationdate><title>Using unsupervised learning methods to group African countries based on COVID-19 prevalence</title><author>Osi, A. A. ; Usman, A. ; Auwal, S. T. ; Ibrahim, M. A. ; Jacqueline, L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p634-f5a67976042c95c5d83ba5c81326b421d5b4b2a3164b11e36e0f85e19f113e93</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algorithms</topic><topic>Cluster analysis</topic><topic>Clustering</topic><topic>Economic development</topic><topic>Machine learning</topic><topic>Unsupervised learning</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Osi, A. A.</creatorcontrib><creatorcontrib>Usman, A.</creatorcontrib><creatorcontrib>Auwal, S. T.</creatorcontrib><creatorcontrib>Ibrahim, M. A.</creatorcontrib><creatorcontrib>Jacqueline, L.</creatorcontrib><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Osi, A. A.</au><au>Usman, A.</au><au>Auwal, S. T.</au><au>Ibrahim, M. A.</au><au>Jacqueline, L.</au><au>Cheong, Alexander Chee Hon</au><au>Perumal, Sathish Kumar Selva</au><au>Yong, Lau Chee</au><au>Sivanesan, Siva Kumar</au><au>Thiruchelvam, Vinesh</au><au>Nataraj, Chandrasekharan</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Using unsupervised learning methods to group African countries based on COVID-19 prevalence</atitle><btitle>AIP conference proceedings</btitle><date>2024-08-30</date><risdate>2024</risdate><volume>3161</volume><issue>1</issue><issn>0094-243X</issn><eissn>1551-7616</eissn><coden>APCPCS</coden><abstract>The purpose of this paper is to prepare the most commonly used cluster analysis; hierarchical and non-hierarchical cluster analysis algorithms which are the K-means, the Partition Around Medoids (PAM) and the agglomerative hierarchical, to group 37 African countries on the basis of measures of COVID-19 cases, economic development and general health resources. We found that the optimum number of clusters is four and countries like Morocco, Algeria, Libya, Gabon, Botswana, Tunisia, Mauritius, and Seychelles are grouped together into one cluster, and how Egypt and South Africa formed another cluster. A Hierarchical clustering was found to be more precise compared to the other two algorithms.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0229594</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0094-243X |
ispartof | AIP conference proceedings, 2024, Vol.3161 (1) |
issn | 0094-243X 1551-7616 |
language | eng |
recordid | cdi_proquest_journals_3098898395 |
source | AIP Journals Complete |
subjects | Algorithms Cluster analysis Clustering Economic development Machine learning Unsupervised learning |
title | Using unsupervised learning methods to group African countries based on COVID-19 prevalence |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T14%3A25%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Using%20unsupervised%20learning%20methods%20to%20group%20African%20countries%20based%20on%20COVID-19%20prevalence&rft.btitle=AIP%20conference%20proceedings&rft.au=Osi,%20A.%20A.&rft.date=2024-08-30&rft.volume=3161&rft.issue=1&rft.issn=0094-243X&rft.eissn=1551-7616&rft.coden=APCPCS&rft_id=info:doi/10.1063/5.0229594&rft_dat=%3Cproquest_scita%3E3098898395%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3098898395&rft_id=info:pmid/&rfr_iscdi=true |