New metrics for distinguishing the skill of long-range ENSO forecasting models

Long-range seasonal ENSO (El Niño Southern Oscillation) forecasts are provided by operational dynamical and statistical models and the skills of these models are a matter of contention. In this work, new skill metrics are proposed for determining whether or not the model skills are significantly dif...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Halide, Halmar, Wulandari, Putri, Andika, Andika
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page
container_title
container_volume 2774
creator Halide, Halmar
Wulandari, Putri
Andika, Andika
description Long-range seasonal ENSO (El Niño Southern Oscillation) forecasts are provided by operational dynamical and statistical models and the skills of these models are a matter of contention. In this work, new skill metrics are proposed for determining whether or not the model skills are significantly different. Using an ENSO idealized data set, it is shown that the newly developed metrics RIP (Rotated Index Positive) and RIN (Rotated Index Negative) were capable of distinguishing between under-prediction and over-prediction whereas other popular metrics ACC (Anomaly Coefficient Correlation) and RMSE (Root Mean Squared Error) metrics failed. These metrics were also applied to perform skill assessment on the ENSO operational data set. RIP, RIN, ACC and RMSE metrics successfully differentiate model skills based on the ENSO phase. Dynamical models need more improvement in reducing their false alarms. The two models do not significantly differ in predicting the La Niña phase. It is recommended that both RIP and RIN should be used to complement ACC and RMSE in model skill assessment.
doi_str_mv 10.1063/5.0164472
format Conference Proceeding
fullrecord <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_proquest_journals_3098898337</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3098898337</sourcerecordid><originalsourceid>FETCH-LOGICAL-p632-a12eb94ac0158e0f1c3079bda4e708f42c590e8886d2e668a93f89b51b0b48fb3</originalsourceid><addsrcrecordid>eNotkMtKAzEYRoMoWKsL3yDgTpj65zrJUkq9QJku7MJdyMwkbep0UpMp4tvb2q7O5vB9cBC6JzAhINmTmACRnJf0Ao2IEKQoJZGXaASgeUE5-7xGNzlvAKguSzVCVeV-8NYNKTQZ-5hwG_IQ-tU-5PUBeFg7nL9C1-HocRf7VZFsv3J4Vn0sjr5r7L-Pt7F1Xb5FV9522d2dOUbLl9ly-lbMF6_v0-d5sZOMFpZQV2tuGyBCOfCkYVDqurXclaA8p43Q4JRSsqVOSmU180rXgtRQc-VrNkYPp9ldit97lwezifvUHx4NA62UVoyVB-vxZOUmDHYIsTe7FLY2_RoC5pjLCHPOxf4A7CVb4g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype><pqid>3098898337</pqid></control><display><type>conference_proceeding</type><title>New metrics for distinguishing the skill of long-range ENSO forecasting models</title><source>AIP Journals Complete</source><creator>Halide, Halmar ; Wulandari, Putri ; Andika, Andika</creator><contributor>Taba, Paulina ; Ribal, Agustinus ; Tahir, Dahlang</contributor><creatorcontrib>Halide, Halmar ; Wulandari, Putri ; Andika, Andika ; Taba, Paulina ; Ribal, Agustinus ; Tahir, Dahlang</creatorcontrib><description>Long-range seasonal ENSO (El Niño Southern Oscillation) forecasts are provided by operational dynamical and statistical models and the skills of these models are a matter of contention. In this work, new skill metrics are proposed for determining whether or not the model skills are significantly different. Using an ENSO idealized data set, it is shown that the newly developed metrics RIP (Rotated Index Positive) and RIN (Rotated Index Negative) were capable of distinguishing between under-prediction and over-prediction whereas other popular metrics ACC (Anomaly Coefficient Correlation) and RMSE (Root Mean Squared Error) metrics failed. These metrics were also applied to perform skill assessment on the ENSO operational data set. RIP, RIN, ACC and RMSE metrics successfully differentiate model skills based on the ENSO phase. Dynamical models need more improvement in reducing their false alarms. The two models do not significantly differ in predicting the La Niña phase. It is recommended that both RIP and RIN should be used to complement ACC and RMSE in model skill assessment.</description><identifier>ISSN: 0094-243X</identifier><identifier>EISSN: 1551-7616</identifier><identifier>DOI: 10.1063/5.0164472</identifier><identifier>CODEN: APCPCS</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Datasets ; Dynamic models ; El Nino ; False alarms ; La Nina ; Predictions ; Root-mean-square errors ; Skills ; Southern Oscillation ; Statistical models</subject><ispartof>AIP Conference Proceedings, 2024, Vol.2774 (1)</ispartof><rights>AIP Publishing LLC</rights><rights>2024 AIP Publishing LLC.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/acp/article-lookup/doi/10.1063/5.0164472$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>309,310,314,780,784,789,790,794,4512,23930,23931,25140,27924,27925,76384</link.rule.ids></links><search><contributor>Taba, Paulina</contributor><contributor>Ribal, Agustinus</contributor><contributor>Tahir, Dahlang</contributor><creatorcontrib>Halide, Halmar</creatorcontrib><creatorcontrib>Wulandari, Putri</creatorcontrib><creatorcontrib>Andika, Andika</creatorcontrib><title>New metrics for distinguishing the skill of long-range ENSO forecasting models</title><title>AIP Conference Proceedings</title><description>Long-range seasonal ENSO (El Niño Southern Oscillation) forecasts are provided by operational dynamical and statistical models and the skills of these models are a matter of contention. In this work, new skill metrics are proposed for determining whether or not the model skills are significantly different. Using an ENSO idealized data set, it is shown that the newly developed metrics RIP (Rotated Index Positive) and RIN (Rotated Index Negative) were capable of distinguishing between under-prediction and over-prediction whereas other popular metrics ACC (Anomaly Coefficient Correlation) and RMSE (Root Mean Squared Error) metrics failed. These metrics were also applied to perform skill assessment on the ENSO operational data set. RIP, RIN, ACC and RMSE metrics successfully differentiate model skills based on the ENSO phase. Dynamical models need more improvement in reducing their false alarms. The two models do not significantly differ in predicting the La Niña phase. It is recommended that both RIP and RIN should be used to complement ACC and RMSE in model skill assessment.</description><subject>Datasets</subject><subject>Dynamic models</subject><subject>El Nino</subject><subject>False alarms</subject><subject>La Nina</subject><subject>Predictions</subject><subject>Root-mean-square errors</subject><subject>Skills</subject><subject>Southern Oscillation</subject><subject>Statistical models</subject><issn>0094-243X</issn><issn>1551-7616</issn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2024</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNotkMtKAzEYRoMoWKsL3yDgTpj65zrJUkq9QJku7MJdyMwkbep0UpMp4tvb2q7O5vB9cBC6JzAhINmTmACRnJf0Ao2IEKQoJZGXaASgeUE5-7xGNzlvAKguSzVCVeV-8NYNKTQZ-5hwG_IQ-tU-5PUBeFg7nL9C1-HocRf7VZFsv3J4Vn0sjr5r7L-Pt7F1Xb5FV9522d2dOUbLl9ly-lbMF6_v0-d5sZOMFpZQV2tuGyBCOfCkYVDqurXclaA8p43Q4JRSsqVOSmU180rXgtRQc-VrNkYPp9ldit97lwezifvUHx4NA62UVoyVB-vxZOUmDHYIsTe7FLY2_RoC5pjLCHPOxf4A7CVb4g</recordid><startdate>20240830</startdate><enddate>20240830</enddate><creator>Halide, Halmar</creator><creator>Wulandari, Putri</creator><creator>Andika, Andika</creator><general>American Institute of Physics</general><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20240830</creationdate><title>New metrics for distinguishing the skill of long-range ENSO forecasting models</title><author>Halide, Halmar ; Wulandari, Putri ; Andika, Andika</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p632-a12eb94ac0158e0f1c3079bda4e708f42c590e8886d2e668a93f89b51b0b48fb3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Datasets</topic><topic>Dynamic models</topic><topic>El Nino</topic><topic>False alarms</topic><topic>La Nina</topic><topic>Predictions</topic><topic>Root-mean-square errors</topic><topic>Skills</topic><topic>Southern Oscillation</topic><topic>Statistical models</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Halide, Halmar</creatorcontrib><creatorcontrib>Wulandari, Putri</creatorcontrib><creatorcontrib>Andika, Andika</creatorcontrib><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Halide, Halmar</au><au>Wulandari, Putri</au><au>Andika, Andika</au><au>Taba, Paulina</au><au>Ribal, Agustinus</au><au>Tahir, Dahlang</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>New metrics for distinguishing the skill of long-range ENSO forecasting models</atitle><btitle>AIP Conference Proceedings</btitle><date>2024-08-30</date><risdate>2024</risdate><volume>2774</volume><issue>1</issue><issn>0094-243X</issn><eissn>1551-7616</eissn><coden>APCPCS</coden><abstract>Long-range seasonal ENSO (El Niño Southern Oscillation) forecasts are provided by operational dynamical and statistical models and the skills of these models are a matter of contention. In this work, new skill metrics are proposed for determining whether or not the model skills are significantly different. Using an ENSO idealized data set, it is shown that the newly developed metrics RIP (Rotated Index Positive) and RIN (Rotated Index Negative) were capable of distinguishing between under-prediction and over-prediction whereas other popular metrics ACC (Anomaly Coefficient Correlation) and RMSE (Root Mean Squared Error) metrics failed. These metrics were also applied to perform skill assessment on the ENSO operational data set. RIP, RIN, ACC and RMSE metrics successfully differentiate model skills based on the ENSO phase. Dynamical models need more improvement in reducing their false alarms. The two models do not significantly differ in predicting the La Niña phase. It is recommended that both RIP and RIN should be used to complement ACC and RMSE in model skill assessment.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0164472</doi><tpages>14</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0094-243X
ispartof AIP Conference Proceedings, 2024, Vol.2774 (1)
issn 0094-243X
1551-7616
language eng
recordid cdi_proquest_journals_3098898337
source AIP Journals Complete
subjects Datasets
Dynamic models
El Nino
False alarms
La Nina
Predictions
Root-mean-square errors
Skills
Southern Oscillation
Statistical models
title New metrics for distinguishing the skill of long-range ENSO forecasting models
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T03%3A20%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=New%20metrics%20for%20distinguishing%20the%20skill%20of%20long-range%20ENSO%20forecasting%20models&rft.btitle=AIP%20Conference%20Proceedings&rft.au=Halide,%20Halmar&rft.date=2024-08-30&rft.volume=2774&rft.issue=1&rft.issn=0094-243X&rft.eissn=1551-7616&rft.coden=APCPCS&rft_id=info:doi/10.1063/5.0164472&rft_dat=%3Cproquest_scita%3E3098898337%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3098898337&rft_id=info:pmid/&rfr_iscdi=true