New metrics for distinguishing the skill of long-range ENSO forecasting models
Long-range seasonal ENSO (El Niño Southern Oscillation) forecasts are provided by operational dynamical and statistical models and the skills of these models are a matter of contention. In this work, new skill metrics are proposed for determining whether or not the model skills are significantly dif...
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 1 |
container_start_page | |
container_title | |
container_volume | 2774 |
creator | Halide, Halmar Wulandari, Putri Andika, Andika |
description | Long-range seasonal ENSO (El Niño Southern Oscillation) forecasts are provided by operational dynamical and statistical models and the skills of these models are a matter of contention. In this work, new skill metrics are proposed for determining whether or not the model skills are significantly different. Using an ENSO idealized data set, it is shown that the newly developed metrics RIP (Rotated Index Positive) and RIN (Rotated Index Negative) were capable of distinguishing between under-prediction and over-prediction whereas other popular metrics ACC (Anomaly Coefficient Correlation) and RMSE (Root Mean Squared Error) metrics failed. These metrics were also applied to perform skill assessment on the ENSO operational data set. RIP, RIN, ACC and RMSE metrics successfully differentiate model skills based on the ENSO phase. Dynamical models need more improvement in reducing their false alarms. The two models do not significantly differ in predicting the La Niña phase. It is recommended that both RIP and RIN should be used to complement ACC and RMSE in model skill assessment. |
doi_str_mv | 10.1063/5.0164472 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_proquest_journals_3098898337</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3098898337</sourcerecordid><originalsourceid>FETCH-LOGICAL-p632-a12eb94ac0158e0f1c3079bda4e708f42c590e8886d2e668a93f89b51b0b48fb3</originalsourceid><addsrcrecordid>eNotkMtKAzEYRoMoWKsL3yDgTpj65zrJUkq9QJku7MJdyMwkbep0UpMp4tvb2q7O5vB9cBC6JzAhINmTmACRnJf0Ao2IEKQoJZGXaASgeUE5-7xGNzlvAKguSzVCVeV-8NYNKTQZ-5hwG_IQ-tU-5PUBeFg7nL9C1-HocRf7VZFsv3J4Vn0sjr5r7L-Pt7F1Xb5FV9522d2dOUbLl9ly-lbMF6_v0-d5sZOMFpZQV2tuGyBCOfCkYVDqurXclaA8p43Q4JRSsqVOSmU180rXgtRQc-VrNkYPp9ldit97lwezifvUHx4NA62UVoyVB-vxZOUmDHYIsTe7FLY2_RoC5pjLCHPOxf4A7CVb4g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype><pqid>3098898337</pqid></control><display><type>conference_proceeding</type><title>New metrics for distinguishing the skill of long-range ENSO forecasting models</title><source>AIP Journals Complete</source><creator>Halide, Halmar ; Wulandari, Putri ; Andika, Andika</creator><contributor>Taba, Paulina ; Ribal, Agustinus ; Tahir, Dahlang</contributor><creatorcontrib>Halide, Halmar ; Wulandari, Putri ; Andika, Andika ; Taba, Paulina ; Ribal, Agustinus ; Tahir, Dahlang</creatorcontrib><description>Long-range seasonal ENSO (El Niño Southern Oscillation) forecasts are provided by operational dynamical and statistical models and the skills of these models are a matter of contention. In this work, new skill metrics are proposed for determining whether or not the model skills are significantly different. Using an ENSO idealized data set, it is shown that the newly developed metrics RIP (Rotated Index Positive) and RIN (Rotated Index Negative) were capable of distinguishing between under-prediction and over-prediction whereas other popular metrics ACC (Anomaly Coefficient Correlation) and RMSE (Root Mean Squared Error) metrics failed. These metrics were also applied to perform skill assessment on the ENSO operational data set. RIP, RIN, ACC and RMSE metrics successfully differentiate model skills based on the ENSO phase. Dynamical models need more improvement in reducing their false alarms. The two models do not significantly differ in predicting the La Niña phase. It is recommended that both RIP and RIN should be used to complement ACC and RMSE in model skill assessment.</description><identifier>ISSN: 0094-243X</identifier><identifier>EISSN: 1551-7616</identifier><identifier>DOI: 10.1063/5.0164472</identifier><identifier>CODEN: APCPCS</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Datasets ; Dynamic models ; El Nino ; False alarms ; La Nina ; Predictions ; Root-mean-square errors ; Skills ; Southern Oscillation ; Statistical models</subject><ispartof>AIP Conference Proceedings, 2024, Vol.2774 (1)</ispartof><rights>AIP Publishing LLC</rights><rights>2024 AIP Publishing LLC.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/acp/article-lookup/doi/10.1063/5.0164472$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>309,310,314,780,784,789,790,794,4512,23930,23931,25140,27924,27925,76384</link.rule.ids></links><search><contributor>Taba, Paulina</contributor><contributor>Ribal, Agustinus</contributor><contributor>Tahir, Dahlang</contributor><creatorcontrib>Halide, Halmar</creatorcontrib><creatorcontrib>Wulandari, Putri</creatorcontrib><creatorcontrib>Andika, Andika</creatorcontrib><title>New metrics for distinguishing the skill of long-range ENSO forecasting models</title><title>AIP Conference Proceedings</title><description>Long-range seasonal ENSO (El Niño Southern Oscillation) forecasts are provided by operational dynamical and statistical models and the skills of these models are a matter of contention. In this work, new skill metrics are proposed for determining whether or not the model skills are significantly different. Using an ENSO idealized data set, it is shown that the newly developed metrics RIP (Rotated Index Positive) and RIN (Rotated Index Negative) were capable of distinguishing between under-prediction and over-prediction whereas other popular metrics ACC (Anomaly Coefficient Correlation) and RMSE (Root Mean Squared Error) metrics failed. These metrics were also applied to perform skill assessment on the ENSO operational data set. RIP, RIN, ACC and RMSE metrics successfully differentiate model skills based on the ENSO phase. Dynamical models need more improvement in reducing their false alarms. The two models do not significantly differ in predicting the La Niña phase. It is recommended that both RIP and RIN should be used to complement ACC and RMSE in model skill assessment.</description><subject>Datasets</subject><subject>Dynamic models</subject><subject>El Nino</subject><subject>False alarms</subject><subject>La Nina</subject><subject>Predictions</subject><subject>Root-mean-square errors</subject><subject>Skills</subject><subject>Southern Oscillation</subject><subject>Statistical models</subject><issn>0094-243X</issn><issn>1551-7616</issn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2024</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNotkMtKAzEYRoMoWKsL3yDgTpj65zrJUkq9QJku7MJdyMwkbep0UpMp4tvb2q7O5vB9cBC6JzAhINmTmACRnJf0Ao2IEKQoJZGXaASgeUE5-7xGNzlvAKguSzVCVeV-8NYNKTQZ-5hwG_IQ-tU-5PUBeFg7nL9C1-HocRf7VZFsv3J4Vn0sjr5r7L-Pt7F1Xb5FV9522d2dOUbLl9ly-lbMF6_v0-d5sZOMFpZQV2tuGyBCOfCkYVDqurXclaA8p43Q4JRSsqVOSmU180rXgtRQc-VrNkYPp9ldit97lwezifvUHx4NA62UVoyVB-vxZOUmDHYIsTe7FLY2_RoC5pjLCHPOxf4A7CVb4g</recordid><startdate>20240830</startdate><enddate>20240830</enddate><creator>Halide, Halmar</creator><creator>Wulandari, Putri</creator><creator>Andika, Andika</creator><general>American Institute of Physics</general><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20240830</creationdate><title>New metrics for distinguishing the skill of long-range ENSO forecasting models</title><author>Halide, Halmar ; Wulandari, Putri ; Andika, Andika</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p632-a12eb94ac0158e0f1c3079bda4e708f42c590e8886d2e668a93f89b51b0b48fb3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Datasets</topic><topic>Dynamic models</topic><topic>El Nino</topic><topic>False alarms</topic><topic>La Nina</topic><topic>Predictions</topic><topic>Root-mean-square errors</topic><topic>Skills</topic><topic>Southern Oscillation</topic><topic>Statistical models</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Halide, Halmar</creatorcontrib><creatorcontrib>Wulandari, Putri</creatorcontrib><creatorcontrib>Andika, Andika</creatorcontrib><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Halide, Halmar</au><au>Wulandari, Putri</au><au>Andika, Andika</au><au>Taba, Paulina</au><au>Ribal, Agustinus</au><au>Tahir, Dahlang</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>New metrics for distinguishing the skill of long-range ENSO forecasting models</atitle><btitle>AIP Conference Proceedings</btitle><date>2024-08-30</date><risdate>2024</risdate><volume>2774</volume><issue>1</issue><issn>0094-243X</issn><eissn>1551-7616</eissn><coden>APCPCS</coden><abstract>Long-range seasonal ENSO (El Niño Southern Oscillation) forecasts are provided by operational dynamical and statistical models and the skills of these models are a matter of contention. In this work, new skill metrics are proposed for determining whether or not the model skills are significantly different. Using an ENSO idealized data set, it is shown that the newly developed metrics RIP (Rotated Index Positive) and RIN (Rotated Index Negative) were capable of distinguishing between under-prediction and over-prediction whereas other popular metrics ACC (Anomaly Coefficient Correlation) and RMSE (Root Mean Squared Error) metrics failed. These metrics were also applied to perform skill assessment on the ENSO operational data set. RIP, RIN, ACC and RMSE metrics successfully differentiate model skills based on the ENSO phase. Dynamical models need more improvement in reducing their false alarms. The two models do not significantly differ in predicting the La Niña phase. It is recommended that both RIP and RIN should be used to complement ACC and RMSE in model skill assessment.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0164472</doi><tpages>14</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0094-243X |
ispartof | AIP Conference Proceedings, 2024, Vol.2774 (1) |
issn | 0094-243X 1551-7616 |
language | eng |
recordid | cdi_proquest_journals_3098898337 |
source | AIP Journals Complete |
subjects | Datasets Dynamic models El Nino False alarms La Nina Predictions Root-mean-square errors Skills Southern Oscillation Statistical models |
title | New metrics for distinguishing the skill of long-range ENSO forecasting models |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T03%3A20%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=New%20metrics%20for%20distinguishing%20the%20skill%20of%20long-range%20ENSO%20forecasting%20models&rft.btitle=AIP%20Conference%20Proceedings&rft.au=Halide,%20Halmar&rft.date=2024-08-30&rft.volume=2774&rft.issue=1&rft.issn=0094-243X&rft.eissn=1551-7616&rft.coden=APCPCS&rft_id=info:doi/10.1063/5.0164472&rft_dat=%3Cproquest_scita%3E3098898337%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3098898337&rft_id=info:pmid/&rfr_iscdi=true |