AoU-Based Local Update and User Scheduling for Semi-Asynchronous Online Federated Learning in Wireless Networks

With the advent of the 5G and 6G eras and the explosive growth of mobile users, machine learning (ML) is increasingly used for extracting important information from a large amount of generated data and making intelligent decisions for complex environments. Especially, distributed ML techniques are g...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE internet of things journal 2024-09, Vol.11 (18), p.29673-29688
Hauptverfasser: Zheng, Jianing, Liu, Xiaolan, Ling, Zhuang, Hu, Fengye
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 29688
container_issue 18
container_start_page 29673
container_title IEEE internet of things journal
container_volume 11
creator Zheng, Jianing
Liu, Xiaolan
Ling, Zhuang
Hu, Fengye
description With the advent of the 5G and 6G eras and the explosive growth of mobile users, machine learning (ML) is increasingly used for extracting important information from a large amount of generated data and making intelligent decisions for complex environments. Especially, distributed ML techniques are getting more attention to enable training ML models in a distributed manner by exploiting distributed computational resources at the network edge. Federated learning (FL) as a classical distributed learning approach can not only protect data privacy but also reduce communication overhead. However, it requires synchrony among users, which is hard to satisfy due to the heterogeneity of the wireless networks. Hence, we first propose a clustering-based semi-asynchronous online FL with Age-of-Update (AoU)-based local update (CSAOFL-ALU) with importance-based user clustering and asynchronous federated learning with AoU-based local update (AsynFL-ALU)-based local update. After that, the base station aggregates the cluster model of each cluster with synchronous FL. We also provide mathematical convergence analysis of the CSAOFL-ALU algorithm. The results show that the global model convergence rate is inversely proportional to the users' AoU, at the same time, the convergence bound of the global loss function is inversely proportional to the size and the importance of the user data set. The experiments are conducted on the nonindependently and identically distributed MINST data set. Numerical results demonstrate that the proposed AsynFL-ALU with priority-based user scheduling achieves better learning performance than fully asynchronous FL, and converges faster than the baseline user scheduling schemes. The CSAOFL-ALU converges faster with less communication time than the baseline algorithms and increases the fairness of user participation.
doi_str_mv 10.1109/JIOT.2024.3399404
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_3098882080</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10529107</ieee_id><sourcerecordid>3098882080</sourcerecordid><originalsourceid>FETCH-LOGICAL-c246t-ca27e634a1b9197845eece24420169b09f7035e9c3b33cca4a37778e2cf99ab83</originalsourceid><addsrcrecordid>eNpNkE1Lw0AQhhdRsNT-AMHDgufU_Uo2e6zFaqXYgw0el81mYlPTbN1NkP57E9pDTzPDPM8MvAjdUzKllKin9-V6M2WEiSnnSgkirtCIcSYjkSTs-qK_RZMQdoSQXoupSkbIzVwWPZsABV45a2qcHQrTAjZNgbMAHn_aLRRdXTXfuHT9CPsqmoVjY7feNa4LeN30S8ALKMD3Zn8HjG8GvmrwV-WhhhDwB7R_zv-EO3RTmjrA5FzHKFu8bOZv0Wr9upzPVpFlImkja5iEhAtDc0WVTEUMYIEJwQhNVE5UKQmPQVmec26tEYZLKVNgtlTK5Ckfo8fT3YN3vx2EVu9c55v-peZEpWnKSEp6ip4o610IHkp98NXe-KOmRA_R6iFaPUSrz9H2zsPJqQDggo-ZokTyf1KNdN0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3098882080</pqid></control><display><type>article</type><title>AoU-Based Local Update and User Scheduling for Semi-Asynchronous Online Federated Learning in Wireless Networks</title><source>IEEE Electronic Library (IEL)</source><creator>Zheng, Jianing ; Liu, Xiaolan ; Ling, Zhuang ; Hu, Fengye</creator><creatorcontrib>Zheng, Jianing ; Liu, Xiaolan ; Ling, Zhuang ; Hu, Fengye</creatorcontrib><description>With the advent of the 5G and 6G eras and the explosive growth of mobile users, machine learning (ML) is increasingly used for extracting important information from a large amount of generated data and making intelligent decisions for complex environments. Especially, distributed ML techniques are getting more attention to enable training ML models in a distributed manner by exploiting distributed computational resources at the network edge. Federated learning (FL) as a classical distributed learning approach can not only protect data privacy but also reduce communication overhead. However, it requires synchrony among users, which is hard to satisfy due to the heterogeneity of the wireless networks. Hence, we first propose a clustering-based semi-asynchronous online FL with Age-of-Update (AoU)-based local update (CSAOFL-ALU) with importance-based user clustering and asynchronous federated learning with AoU-based local update (AsynFL-ALU)-based local update. After that, the base station aggregates the cluster model of each cluster with synchronous FL. We also provide mathematical convergence analysis of the CSAOFL-ALU algorithm. The results show that the global model convergence rate is inversely proportional to the users' AoU, at the same time, the convergence bound of the global loss function is inversely proportional to the size and the importance of the user data set. The experiments are conducted on the nonindependently and identically distributed MINST data set. Numerical results demonstrate that the proposed AsynFL-ALU with priority-based user scheduling achieves better learning performance than fully asynchronous FL, and converges faster than the baseline user scheduling schemes. The CSAOFL-ALU converges faster with less communication time than the baseline algorithms and increases the fairness of user participation.</description><identifier>ISSN: 2327-4662</identifier><identifier>EISSN: 2327-4662</identifier><identifier>DOI: 10.1109/JIOT.2024.3399404</identifier><identifier>CODEN: IITJAU</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Age of Update (AoU) ; Aggregates ; Algorithms ; asynchronous federated learning (AsynFL) ; Clustering ; Computational modeling ; Convergence ; Data models ; Datasets ; Federated learning ; federated learning (FL) ; Heterogeneity ; Machine learning ; Priority scheduling ; priority-based user scheduling ; Training ; User satisfaction ; Wireless networks</subject><ispartof>IEEE internet of things journal, 2024-09, Vol.11 (18), p.29673-29688</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c246t-ca27e634a1b9197845eece24420169b09f7035e9c3b33cca4a37778e2cf99ab83</cites><orcidid>0000-0002-5694-4057 ; 0000-0002-7500-9128 ; 0000-0001-8815-7632 ; 0000-0002-8670-1398</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10529107$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27923,27924,54757</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10529107$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Zheng, Jianing</creatorcontrib><creatorcontrib>Liu, Xiaolan</creatorcontrib><creatorcontrib>Ling, Zhuang</creatorcontrib><creatorcontrib>Hu, Fengye</creatorcontrib><title>AoU-Based Local Update and User Scheduling for Semi-Asynchronous Online Federated Learning in Wireless Networks</title><title>IEEE internet of things journal</title><addtitle>JIoT</addtitle><description>With the advent of the 5G and 6G eras and the explosive growth of mobile users, machine learning (ML) is increasingly used for extracting important information from a large amount of generated data and making intelligent decisions for complex environments. Especially, distributed ML techniques are getting more attention to enable training ML models in a distributed manner by exploiting distributed computational resources at the network edge. Federated learning (FL) as a classical distributed learning approach can not only protect data privacy but also reduce communication overhead. However, it requires synchrony among users, which is hard to satisfy due to the heterogeneity of the wireless networks. Hence, we first propose a clustering-based semi-asynchronous online FL with Age-of-Update (AoU)-based local update (CSAOFL-ALU) with importance-based user clustering and asynchronous federated learning with AoU-based local update (AsynFL-ALU)-based local update. After that, the base station aggregates the cluster model of each cluster with synchronous FL. We also provide mathematical convergence analysis of the CSAOFL-ALU algorithm. The results show that the global model convergence rate is inversely proportional to the users' AoU, at the same time, the convergence bound of the global loss function is inversely proportional to the size and the importance of the user data set. The experiments are conducted on the nonindependently and identically distributed MINST data set. Numerical results demonstrate that the proposed AsynFL-ALU with priority-based user scheduling achieves better learning performance than fully asynchronous FL, and converges faster than the baseline user scheduling schemes. The CSAOFL-ALU converges faster with less communication time than the baseline algorithms and increases the fairness of user participation.</description><subject>Age of Update (AoU)</subject><subject>Aggregates</subject><subject>Algorithms</subject><subject>asynchronous federated learning (AsynFL)</subject><subject>Clustering</subject><subject>Computational modeling</subject><subject>Convergence</subject><subject>Data models</subject><subject>Datasets</subject><subject>Federated learning</subject><subject>federated learning (FL)</subject><subject>Heterogeneity</subject><subject>Machine learning</subject><subject>Priority scheduling</subject><subject>priority-based user scheduling</subject><subject>Training</subject><subject>User satisfaction</subject><subject>Wireless networks</subject><issn>2327-4662</issn><issn>2327-4662</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkE1Lw0AQhhdRsNT-AMHDgufU_Uo2e6zFaqXYgw0el81mYlPTbN1NkP57E9pDTzPDPM8MvAjdUzKllKin9-V6M2WEiSnnSgkirtCIcSYjkSTs-qK_RZMQdoSQXoupSkbIzVwWPZsABV45a2qcHQrTAjZNgbMAHn_aLRRdXTXfuHT9CPsqmoVjY7feNa4LeN30S8ALKMD3Zn8HjG8GvmrwV-WhhhDwB7R_zv-EO3RTmjrA5FzHKFu8bOZv0Wr9upzPVpFlImkja5iEhAtDc0WVTEUMYIEJwQhNVE5UKQmPQVmec26tEYZLKVNgtlTK5Ckfo8fT3YN3vx2EVu9c55v-peZEpWnKSEp6ip4o610IHkp98NXe-KOmRA_R6iFaPUSrz9H2zsPJqQDggo-ZokTyf1KNdN0</recordid><startdate>20240915</startdate><enddate>20240915</enddate><creator>Zheng, Jianing</creator><creator>Liu, Xiaolan</creator><creator>Ling, Zhuang</creator><creator>Hu, Fengye</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-5694-4057</orcidid><orcidid>https://orcid.org/0000-0002-7500-9128</orcidid><orcidid>https://orcid.org/0000-0001-8815-7632</orcidid><orcidid>https://orcid.org/0000-0002-8670-1398</orcidid></search><sort><creationdate>20240915</creationdate><title>AoU-Based Local Update and User Scheduling for Semi-Asynchronous Online Federated Learning in Wireless Networks</title><author>Zheng, Jianing ; Liu, Xiaolan ; Ling, Zhuang ; Hu, Fengye</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c246t-ca27e634a1b9197845eece24420169b09f7035e9c3b33cca4a37778e2cf99ab83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Age of Update (AoU)</topic><topic>Aggregates</topic><topic>Algorithms</topic><topic>asynchronous federated learning (AsynFL)</topic><topic>Clustering</topic><topic>Computational modeling</topic><topic>Convergence</topic><topic>Data models</topic><topic>Datasets</topic><topic>Federated learning</topic><topic>federated learning (FL)</topic><topic>Heterogeneity</topic><topic>Machine learning</topic><topic>Priority scheduling</topic><topic>priority-based user scheduling</topic><topic>Training</topic><topic>User satisfaction</topic><topic>Wireless networks</topic><toplevel>online_resources</toplevel><creatorcontrib>Zheng, Jianing</creatorcontrib><creatorcontrib>Liu, Xiaolan</creatorcontrib><creatorcontrib>Ling, Zhuang</creatorcontrib><creatorcontrib>Hu, Fengye</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE internet of things journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Zheng, Jianing</au><au>Liu, Xiaolan</au><au>Ling, Zhuang</au><au>Hu, Fengye</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>AoU-Based Local Update and User Scheduling for Semi-Asynchronous Online Federated Learning in Wireless Networks</atitle><jtitle>IEEE internet of things journal</jtitle><stitle>JIoT</stitle><date>2024-09-15</date><risdate>2024</risdate><volume>11</volume><issue>18</issue><spage>29673</spage><epage>29688</epage><pages>29673-29688</pages><issn>2327-4662</issn><eissn>2327-4662</eissn><coden>IITJAU</coden><abstract>With the advent of the 5G and 6G eras and the explosive growth of mobile users, machine learning (ML) is increasingly used for extracting important information from a large amount of generated data and making intelligent decisions for complex environments. Especially, distributed ML techniques are getting more attention to enable training ML models in a distributed manner by exploiting distributed computational resources at the network edge. Federated learning (FL) as a classical distributed learning approach can not only protect data privacy but also reduce communication overhead. However, it requires synchrony among users, which is hard to satisfy due to the heterogeneity of the wireless networks. Hence, we first propose a clustering-based semi-asynchronous online FL with Age-of-Update (AoU)-based local update (CSAOFL-ALU) with importance-based user clustering and asynchronous federated learning with AoU-based local update (AsynFL-ALU)-based local update. After that, the base station aggregates the cluster model of each cluster with synchronous FL. We also provide mathematical convergence analysis of the CSAOFL-ALU algorithm. The results show that the global model convergence rate is inversely proportional to the users' AoU, at the same time, the convergence bound of the global loss function is inversely proportional to the size and the importance of the user data set. The experiments are conducted on the nonindependently and identically distributed MINST data set. Numerical results demonstrate that the proposed AsynFL-ALU with priority-based user scheduling achieves better learning performance than fully asynchronous FL, and converges faster than the baseline user scheduling schemes. The CSAOFL-ALU converges faster with less communication time than the baseline algorithms and increases the fairness of user participation.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/JIOT.2024.3399404</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0002-5694-4057</orcidid><orcidid>https://orcid.org/0000-0002-7500-9128</orcidid><orcidid>https://orcid.org/0000-0001-8815-7632</orcidid><orcidid>https://orcid.org/0000-0002-8670-1398</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2327-4662
ispartof IEEE internet of things journal, 2024-09, Vol.11 (18), p.29673-29688
issn 2327-4662
2327-4662
language eng
recordid cdi_proquest_journals_3098882080
source IEEE Electronic Library (IEL)
subjects Age of Update (AoU)
Aggregates
Algorithms
asynchronous federated learning (AsynFL)
Clustering
Computational modeling
Convergence
Data models
Datasets
Federated learning
federated learning (FL)
Heterogeneity
Machine learning
Priority scheduling
priority-based user scheduling
Training
User satisfaction
Wireless networks
title AoU-Based Local Update and User Scheduling for Semi-Asynchronous Online Federated Learning in Wireless Networks
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T19%3A41%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=AoU-Based%20Local%20Update%20and%20User%20Scheduling%20for%20Semi-Asynchronous%20Online%20Federated%20Learning%20in%20Wireless%20Networks&rft.jtitle=IEEE%20internet%20of%20things%20journal&rft.au=Zheng,%20Jianing&rft.date=2024-09-15&rft.volume=11&rft.issue=18&rft.spage=29673&rft.epage=29688&rft.pages=29673-29688&rft.issn=2327-4662&rft.eissn=2327-4662&rft.coden=IITJAU&rft_id=info:doi/10.1109/JIOT.2024.3399404&rft_dat=%3Cproquest_RIE%3E3098882080%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3098882080&rft_id=info:pmid/&rft_ieee_id=10529107&rfr_iscdi=true