CodeSift: An LLM-Based Reference-Less Framework for Automatic Code Validation

The advent of large language models (LLMs) has greatly facilitated code generation, but ensuring the functional correctness of generated code remains a challenge. Traditional validation methods are often time-consuming, error-prone, and impractical for large volumes of code. We introduce CodeSift, a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2024-08
Hauptverfasser: Aggarwal, Pooja, Chatterjee, Oishik, Dai, Ting, Mohapatra, Prateeti, Paulovicks, Brent, Blancett, Brad, De Magalhaes, Arthur
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Aggarwal, Pooja
Chatterjee, Oishik
Dai, Ting
Mohapatra, Prateeti
Paulovicks, Brent
Blancett, Brad
De Magalhaes, Arthur
description The advent of large language models (LLMs) has greatly facilitated code generation, but ensuring the functional correctness of generated code remains a challenge. Traditional validation methods are often time-consuming, error-prone, and impractical for large volumes of code. We introduce CodeSift, a novel framework that leverages LLMs as the first-line filter of code validation without the need for execution, reference code, or human feedback, thereby reducing the validation effort. We assess the effectiveness of our method across three diverse datasets encompassing two programming languages. Our results indicate that CodeSift outperforms state-of-the-art code evaluation methods. Internal testing conducted with subject matter experts reveals that the output generated by CodeSift is in line with human preference, reinforcing its effectiveness as a dependable automated code validation tool.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_3098383690</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3098383690</sourcerecordid><originalsourceid>FETCH-proquest_journals_30983836903</originalsourceid><addsrcrecordid>eNqNi9EKgjAYRkcQJOU7_ND1YG1p2p1J0oXdVHQrQ_-Bplttk14_gx6gq4_DOd-MBFyIDU22nC9I6FzHGOPxjkeRCMg5Nw1eW-X3kGkoyzM9SIcNXFChRV0jLdE5KKwc8G3sA5SxkI3eDNK3NXzfcJd920xo9IrMlewdhr9dknVxvOUn-rTmNaLzVWdGqydVCZYmIhFxysR_1QfGbzyU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3098383690</pqid></control><display><type>article</type><title>CodeSift: An LLM-Based Reference-Less Framework for Automatic Code Validation</title><source>Free E- Journals</source><creator>Aggarwal, Pooja ; Chatterjee, Oishik ; Dai, Ting ; Mohapatra, Prateeti ; Paulovicks, Brent ; Blancett, Brad ; De Magalhaes, Arthur</creator><creatorcontrib>Aggarwal, Pooja ; Chatterjee, Oishik ; Dai, Ting ; Mohapatra, Prateeti ; Paulovicks, Brent ; Blancett, Brad ; De Magalhaes, Arthur</creatorcontrib><description>The advent of large language models (LLMs) has greatly facilitated code generation, but ensuring the functional correctness of generated code remains a challenge. Traditional validation methods are often time-consuming, error-prone, and impractical for large volumes of code. We introduce CodeSift, a novel framework that leverages LLMs as the first-line filter of code validation without the need for execution, reference code, or human feedback, thereby reducing the validation effort. We assess the effectiveness of our method across three diverse datasets encompassing two programming languages. Our results indicate that CodeSift outperforms state-of-the-art code evaluation methods. Internal testing conducted with subject matter experts reveals that the output generated by CodeSift is in line with human preference, reinforcing its effectiveness as a dependable automated code validation tool.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Effectiveness ; Error correction ; Large language models ; Programming languages ; State-of-the-art reviews</subject><ispartof>arXiv.org, 2024-08</ispartof><rights>2024. This work is published under http://creativecommons.org/licenses/by-nc-sa/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>776,780</link.rule.ids></links><search><creatorcontrib>Aggarwal, Pooja</creatorcontrib><creatorcontrib>Chatterjee, Oishik</creatorcontrib><creatorcontrib>Dai, Ting</creatorcontrib><creatorcontrib>Mohapatra, Prateeti</creatorcontrib><creatorcontrib>Paulovicks, Brent</creatorcontrib><creatorcontrib>Blancett, Brad</creatorcontrib><creatorcontrib>De Magalhaes, Arthur</creatorcontrib><title>CodeSift: An LLM-Based Reference-Less Framework for Automatic Code Validation</title><title>arXiv.org</title><description>The advent of large language models (LLMs) has greatly facilitated code generation, but ensuring the functional correctness of generated code remains a challenge. Traditional validation methods are often time-consuming, error-prone, and impractical for large volumes of code. We introduce CodeSift, a novel framework that leverages LLMs as the first-line filter of code validation without the need for execution, reference code, or human feedback, thereby reducing the validation effort. We assess the effectiveness of our method across three diverse datasets encompassing two programming languages. Our results indicate that CodeSift outperforms state-of-the-art code evaluation methods. Internal testing conducted with subject matter experts reveals that the output generated by CodeSift is in line with human preference, reinforcing its effectiveness as a dependable automated code validation tool.</description><subject>Effectiveness</subject><subject>Error correction</subject><subject>Large language models</subject><subject>Programming languages</subject><subject>State-of-the-art reviews</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNqNi9EKgjAYRkcQJOU7_ND1YG1p2p1J0oXdVHQrQ_-Bplttk14_gx6gq4_DOd-MBFyIDU22nC9I6FzHGOPxjkeRCMg5Nw1eW-X3kGkoyzM9SIcNXFChRV0jLdE5KKwc8G3sA5SxkI3eDNK3NXzfcJd920xo9IrMlewdhr9dknVxvOUn-rTmNaLzVWdGqydVCZYmIhFxysR_1QfGbzyU</recordid><startdate>20240828</startdate><enddate>20240828</enddate><creator>Aggarwal, Pooja</creator><creator>Chatterjee, Oishik</creator><creator>Dai, Ting</creator><creator>Mohapatra, Prateeti</creator><creator>Paulovicks, Brent</creator><creator>Blancett, Brad</creator><creator>De Magalhaes, Arthur</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20240828</creationdate><title>CodeSift: An LLM-Based Reference-Less Framework for Automatic Code Validation</title><author>Aggarwal, Pooja ; Chatterjee, Oishik ; Dai, Ting ; Mohapatra, Prateeti ; Paulovicks, Brent ; Blancett, Brad ; De Magalhaes, Arthur</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_30983836903</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Effectiveness</topic><topic>Error correction</topic><topic>Large language models</topic><topic>Programming languages</topic><topic>State-of-the-art reviews</topic><toplevel>online_resources</toplevel><creatorcontrib>Aggarwal, Pooja</creatorcontrib><creatorcontrib>Chatterjee, Oishik</creatorcontrib><creatorcontrib>Dai, Ting</creatorcontrib><creatorcontrib>Mohapatra, Prateeti</creatorcontrib><creatorcontrib>Paulovicks, Brent</creatorcontrib><creatorcontrib>Blancett, Brad</creatorcontrib><creatorcontrib>De Magalhaes, Arthur</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Aggarwal, Pooja</au><au>Chatterjee, Oishik</au><au>Dai, Ting</au><au>Mohapatra, Prateeti</au><au>Paulovicks, Brent</au><au>Blancett, Brad</au><au>De Magalhaes, Arthur</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>CodeSift: An LLM-Based Reference-Less Framework for Automatic Code Validation</atitle><jtitle>arXiv.org</jtitle><date>2024-08-28</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>The advent of large language models (LLMs) has greatly facilitated code generation, but ensuring the functional correctness of generated code remains a challenge. Traditional validation methods are often time-consuming, error-prone, and impractical for large volumes of code. We introduce CodeSift, a novel framework that leverages LLMs as the first-line filter of code validation without the need for execution, reference code, or human feedback, thereby reducing the validation effort. We assess the effectiveness of our method across three diverse datasets encompassing two programming languages. Our results indicate that CodeSift outperforms state-of-the-art code evaluation methods. Internal testing conducted with subject matter experts reveals that the output generated by CodeSift is in line with human preference, reinforcing its effectiveness as a dependable automated code validation tool.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2024-08
issn 2331-8422
language eng
recordid cdi_proquest_journals_3098383690
source Free E- Journals
subjects Effectiveness
Error correction
Large language models
Programming languages
State-of-the-art reviews
title CodeSift: An LLM-Based Reference-Less Framework for Automatic Code Validation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T21%3A14%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=CodeSift:%20An%20LLM-Based%20Reference-Less%20Framework%20for%20Automatic%20Code%20Validation&rft.jtitle=arXiv.org&rft.au=Aggarwal,%20Pooja&rft.date=2024-08-28&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E3098383690%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3098383690&rft_id=info:pmid/&rfr_iscdi=true