CodeSift: An LLM-Based Reference-Less Framework for Automatic Code Validation
The advent of large language models (LLMs) has greatly facilitated code generation, but ensuring the functional correctness of generated code remains a challenge. Traditional validation methods are often time-consuming, error-prone, and impractical for large volumes of code. We introduce CodeSift, a...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2024-08 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Aggarwal, Pooja Chatterjee, Oishik Dai, Ting Mohapatra, Prateeti Paulovicks, Brent Blancett, Brad De Magalhaes, Arthur |
description | The advent of large language models (LLMs) has greatly facilitated code generation, but ensuring the functional correctness of generated code remains a challenge. Traditional validation methods are often time-consuming, error-prone, and impractical for large volumes of code. We introduce CodeSift, a novel framework that leverages LLMs as the first-line filter of code validation without the need for execution, reference code, or human feedback, thereby reducing the validation effort. We assess the effectiveness of our method across three diverse datasets encompassing two programming languages. Our results indicate that CodeSift outperforms state-of-the-art code evaluation methods. Internal testing conducted with subject matter experts reveals that the output generated by CodeSift is in line with human preference, reinforcing its effectiveness as a dependable automated code validation tool. |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_3098383690</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3098383690</sourcerecordid><originalsourceid>FETCH-proquest_journals_30983836903</originalsourceid><addsrcrecordid>eNqNi9EKgjAYRkcQJOU7_ND1YG1p2p1J0oXdVHQrQ_-Bplttk14_gx6gq4_DOd-MBFyIDU22nC9I6FzHGOPxjkeRCMg5Nw1eW-X3kGkoyzM9SIcNXFChRV0jLdE5KKwc8G3sA5SxkI3eDNK3NXzfcJd920xo9IrMlewdhr9dknVxvOUn-rTmNaLzVWdGqydVCZYmIhFxysR_1QfGbzyU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3098383690</pqid></control><display><type>article</type><title>CodeSift: An LLM-Based Reference-Less Framework for Automatic Code Validation</title><source>Free E- Journals</source><creator>Aggarwal, Pooja ; Chatterjee, Oishik ; Dai, Ting ; Mohapatra, Prateeti ; Paulovicks, Brent ; Blancett, Brad ; De Magalhaes, Arthur</creator><creatorcontrib>Aggarwal, Pooja ; Chatterjee, Oishik ; Dai, Ting ; Mohapatra, Prateeti ; Paulovicks, Brent ; Blancett, Brad ; De Magalhaes, Arthur</creatorcontrib><description>The advent of large language models (LLMs) has greatly facilitated code generation, but ensuring the functional correctness of generated code remains a challenge. Traditional validation methods are often time-consuming, error-prone, and impractical for large volumes of code. We introduce CodeSift, a novel framework that leverages LLMs as the first-line filter of code validation without the need for execution, reference code, or human feedback, thereby reducing the validation effort. We assess the effectiveness of our method across three diverse datasets encompassing two programming languages. Our results indicate that CodeSift outperforms state-of-the-art code evaluation methods. Internal testing conducted with subject matter experts reveals that the output generated by CodeSift is in line with human preference, reinforcing its effectiveness as a dependable automated code validation tool.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Effectiveness ; Error correction ; Large language models ; Programming languages ; State-of-the-art reviews</subject><ispartof>arXiv.org, 2024-08</ispartof><rights>2024. This work is published under http://creativecommons.org/licenses/by-nc-sa/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>776,780</link.rule.ids></links><search><creatorcontrib>Aggarwal, Pooja</creatorcontrib><creatorcontrib>Chatterjee, Oishik</creatorcontrib><creatorcontrib>Dai, Ting</creatorcontrib><creatorcontrib>Mohapatra, Prateeti</creatorcontrib><creatorcontrib>Paulovicks, Brent</creatorcontrib><creatorcontrib>Blancett, Brad</creatorcontrib><creatorcontrib>De Magalhaes, Arthur</creatorcontrib><title>CodeSift: An LLM-Based Reference-Less Framework for Automatic Code Validation</title><title>arXiv.org</title><description>The advent of large language models (LLMs) has greatly facilitated code generation, but ensuring the functional correctness of generated code remains a challenge. Traditional validation methods are often time-consuming, error-prone, and impractical for large volumes of code. We introduce CodeSift, a novel framework that leverages LLMs as the first-line filter of code validation without the need for execution, reference code, or human feedback, thereby reducing the validation effort. We assess the effectiveness of our method across three diverse datasets encompassing two programming languages. Our results indicate that CodeSift outperforms state-of-the-art code evaluation methods. Internal testing conducted with subject matter experts reveals that the output generated by CodeSift is in line with human preference, reinforcing its effectiveness as a dependable automated code validation tool.</description><subject>Effectiveness</subject><subject>Error correction</subject><subject>Large language models</subject><subject>Programming languages</subject><subject>State-of-the-art reviews</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNqNi9EKgjAYRkcQJOU7_ND1YG1p2p1J0oXdVHQrQ_-Bplttk14_gx6gq4_DOd-MBFyIDU22nC9I6FzHGOPxjkeRCMg5Nw1eW-X3kGkoyzM9SIcNXFChRV0jLdE5KKwc8G3sA5SxkI3eDNK3NXzfcJd920xo9IrMlewdhr9dknVxvOUn-rTmNaLzVWdGqydVCZYmIhFxysR_1QfGbzyU</recordid><startdate>20240828</startdate><enddate>20240828</enddate><creator>Aggarwal, Pooja</creator><creator>Chatterjee, Oishik</creator><creator>Dai, Ting</creator><creator>Mohapatra, Prateeti</creator><creator>Paulovicks, Brent</creator><creator>Blancett, Brad</creator><creator>De Magalhaes, Arthur</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20240828</creationdate><title>CodeSift: An LLM-Based Reference-Less Framework for Automatic Code Validation</title><author>Aggarwal, Pooja ; Chatterjee, Oishik ; Dai, Ting ; Mohapatra, Prateeti ; Paulovicks, Brent ; Blancett, Brad ; De Magalhaes, Arthur</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_30983836903</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Effectiveness</topic><topic>Error correction</topic><topic>Large language models</topic><topic>Programming languages</topic><topic>State-of-the-art reviews</topic><toplevel>online_resources</toplevel><creatorcontrib>Aggarwal, Pooja</creatorcontrib><creatorcontrib>Chatterjee, Oishik</creatorcontrib><creatorcontrib>Dai, Ting</creatorcontrib><creatorcontrib>Mohapatra, Prateeti</creatorcontrib><creatorcontrib>Paulovicks, Brent</creatorcontrib><creatorcontrib>Blancett, Brad</creatorcontrib><creatorcontrib>De Magalhaes, Arthur</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Aggarwal, Pooja</au><au>Chatterjee, Oishik</au><au>Dai, Ting</au><au>Mohapatra, Prateeti</au><au>Paulovicks, Brent</au><au>Blancett, Brad</au><au>De Magalhaes, Arthur</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>CodeSift: An LLM-Based Reference-Less Framework for Automatic Code Validation</atitle><jtitle>arXiv.org</jtitle><date>2024-08-28</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>The advent of large language models (LLMs) has greatly facilitated code generation, but ensuring the functional correctness of generated code remains a challenge. Traditional validation methods are often time-consuming, error-prone, and impractical for large volumes of code. We introduce CodeSift, a novel framework that leverages LLMs as the first-line filter of code validation without the need for execution, reference code, or human feedback, thereby reducing the validation effort. We assess the effectiveness of our method across three diverse datasets encompassing two programming languages. Our results indicate that CodeSift outperforms state-of-the-art code evaluation methods. Internal testing conducted with subject matter experts reveals that the output generated by CodeSift is in line with human preference, reinforcing its effectiveness as a dependable automated code validation tool.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2024-08 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_3098383690 |
source | Free E- Journals |
subjects | Effectiveness Error correction Large language models Programming languages State-of-the-art reviews |
title | CodeSift: An LLM-Based Reference-Less Framework for Automatic Code Validation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T21%3A14%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=CodeSift:%20An%20LLM-Based%20Reference-Less%20Framework%20for%20Automatic%20Code%20Validation&rft.jtitle=arXiv.org&rft.au=Aggarwal,%20Pooja&rft.date=2024-08-28&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E3098383690%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3098383690&rft_id=info:pmid/&rfr_iscdi=true |