Numerical Investigation of the Structure of Fracture Network Impact on Interwell Conductivity
We consider two-dimensional single-phase fluid flow of an incompressible fluid in a fractured porous medium, which is located inside a square computational domain. The fractures had a random position and orientation, and the fracture length distribution follows a power law. Fracture networks are sim...
Gespeichert in:
Veröffentlicht in: | Lobachevskii journal of mathematics 2024-05, Vol.45 (5), p.2076-2084 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2084 |
---|---|
container_issue | 5 |
container_start_page | 2076 |
container_title | Lobachevskii journal of mathematics |
container_volume | 45 |
creator | Legostaev, D. Yu Rodionov, S. P. |
description | We consider two-dimensional single-phase fluid flow of an incompressible fluid in a fractured porous medium, which is located inside a square computational domain. The fractures had a random position and orientation, and the fracture length distribution follows a power law. Fracture networks are simulated using the discrete-fracture model. Calculations were performed for fracture network realizations created by multiple random generations. Fluid flows between opposite boundaries of the computational domain (line source and sink) and between vertical wells (point source and sink) are considered. The influence of the type of source and sink on the percolation probability is determined. The dependence of the flow rate between production and injection wells on the fracture network structure was investigated. The flow between the opposite boundaries of the computational domain is considered. For this case, the numerical dependence of the equivalent permeability of the fractured porous medium on the percolation parameter was approximated by an analytical piecewise function. This approximation was used to estimate fluid flow rates between vertical wells. |
doi_str_mv | 10.1134/S1995080224602261 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3098253135</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3098253135</sourcerecordid><originalsourceid>FETCH-LOGICAL-c198t-4588b0ccdc0ddcac0e22ad3ea4223346556590cb46ccad778ee346acbd4707963</originalsourceid><addsrcrecordid>eNp1kE1LAzEQhoMoWKs_wFvA82q-NzlKsXah1EP1KEuapHXrdlOz2Zb-e7Os4EG8zAzvPO8MMwDcYnSPMWUPS6wURxIRwkQKAp-BEZZYZkoJcp7q1M76_iW4atst6hkhRuB90e1cqIyuYdEcXBurjY6Vb6Bfw_jh4DKGzsQuuF6YBj3UCxePPnzCYrdPCkx40UQXjq6u4cQ3NlmqQxVP1-BirevW3fzkMXibPr1OZtn85bmYPM4zg5WMGeNSrpAx1iBrjTbIEaItdZoRQikTnAuukFkxYYy2eS6dS6o2K8tylCtBx-BumLsP_qtLV5Rb34UmrSwpUpJwiilPFB4oE3zbBrcu96Ha6XAqMSr7L5Z_vpg8ZPC0iW02LvxO_t_0DZ2wdPA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3098253135</pqid></control><display><type>article</type><title>Numerical Investigation of the Structure of Fracture Network Impact on Interwell Conductivity</title><source>SpringerLink Journals</source><creator>Legostaev, D. Yu ; Rodionov, S. P.</creator><creatorcontrib>Legostaev, D. Yu ; Rodionov, S. P.</creatorcontrib><description>We consider two-dimensional single-phase fluid flow of an incompressible fluid in a fractured porous medium, which is located inside a square computational domain. The fractures had a random position and orientation, and the fracture length distribution follows a power law. Fracture networks are simulated using the discrete-fracture model. Calculations were performed for fracture network realizations created by multiple random generations. Fluid flows between opposite boundaries of the computational domain (line source and sink) and between vertical wells (point source and sink) are considered. The influence of the type of source and sink on the percolation probability is determined. The dependence of the flow rate between production and injection wells on the fracture network structure was investigated. The flow between the opposite boundaries of the computational domain is considered. For this case, the numerical dependence of the equivalent permeability of the fractured porous medium on the percolation parameter was approximated by an analytical piecewise function. This approximation was used to estimate fluid flow rates between vertical wells.</description><identifier>ISSN: 1995-0802</identifier><identifier>EISSN: 1818-9962</identifier><identifier>DOI: 10.1134/S1995080224602261</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>Algebra ; Analysis ; Approximation ; Boundaries ; Flow velocity ; Fluid flow ; Fractures ; Geometry ; Incompressible flow ; Incompressible fluids ; Injection wells ; Mathematical analysis ; Mathematical Logic and Foundations ; Mathematics ; Mathematics and Statistics ; Parameter estimation ; Percolation ; Porous media ; Porous media flow ; Probability Theory and Stochastic Processes ; Two dimensional flow</subject><ispartof>Lobachevskii journal of mathematics, 2024-05, Vol.45 (5), p.2076-2084</ispartof><rights>Pleiades Publishing, Ltd. 2024</rights><rights>Pleiades Publishing, Ltd. 2024.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c198t-4588b0ccdc0ddcac0e22ad3ea4223346556590cb46ccad778ee346acbd4707963</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1134/S1995080224602261$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1134/S1995080224602261$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Legostaev, D. Yu</creatorcontrib><creatorcontrib>Rodionov, S. P.</creatorcontrib><title>Numerical Investigation of the Structure of Fracture Network Impact on Interwell Conductivity</title><title>Lobachevskii journal of mathematics</title><addtitle>Lobachevskii J Math</addtitle><description>We consider two-dimensional single-phase fluid flow of an incompressible fluid in a fractured porous medium, which is located inside a square computational domain. The fractures had a random position and orientation, and the fracture length distribution follows a power law. Fracture networks are simulated using the discrete-fracture model. Calculations were performed for fracture network realizations created by multiple random generations. Fluid flows between opposite boundaries of the computational domain (line source and sink) and between vertical wells (point source and sink) are considered. The influence of the type of source and sink on the percolation probability is determined. The dependence of the flow rate between production and injection wells on the fracture network structure was investigated. The flow between the opposite boundaries of the computational domain is considered. For this case, the numerical dependence of the equivalent permeability of the fractured porous medium on the percolation parameter was approximated by an analytical piecewise function. This approximation was used to estimate fluid flow rates between vertical wells.</description><subject>Algebra</subject><subject>Analysis</subject><subject>Approximation</subject><subject>Boundaries</subject><subject>Flow velocity</subject><subject>Fluid flow</subject><subject>Fractures</subject><subject>Geometry</subject><subject>Incompressible flow</subject><subject>Incompressible fluids</subject><subject>Injection wells</subject><subject>Mathematical analysis</subject><subject>Mathematical Logic and Foundations</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Parameter estimation</subject><subject>Percolation</subject><subject>Porous media</subject><subject>Porous media flow</subject><subject>Probability Theory and Stochastic Processes</subject><subject>Two dimensional flow</subject><issn>1995-0802</issn><issn>1818-9962</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp1kE1LAzEQhoMoWKs_wFvA82q-NzlKsXah1EP1KEuapHXrdlOz2Zb-e7Os4EG8zAzvPO8MMwDcYnSPMWUPS6wURxIRwkQKAp-BEZZYZkoJcp7q1M76_iW4atst6hkhRuB90e1cqIyuYdEcXBurjY6Vb6Bfw_jh4DKGzsQuuF6YBj3UCxePPnzCYrdPCkx40UQXjq6u4cQ3NlmqQxVP1-BirevW3fzkMXibPr1OZtn85bmYPM4zg5WMGeNSrpAx1iBrjTbIEaItdZoRQikTnAuukFkxYYy2eS6dS6o2K8tylCtBx-BumLsP_qtLV5Rb34UmrSwpUpJwiilPFB4oE3zbBrcu96Ha6XAqMSr7L5Z_vpg8ZPC0iW02LvxO_t_0DZ2wdPA</recordid><startdate>20240501</startdate><enddate>20240501</enddate><creator>Legostaev, D. Yu</creator><creator>Rodionov, S. P.</creator><general>Pleiades Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20240501</creationdate><title>Numerical Investigation of the Structure of Fracture Network Impact on Interwell Conductivity</title><author>Legostaev, D. Yu ; Rodionov, S. P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c198t-4588b0ccdc0ddcac0e22ad3ea4223346556590cb46ccad778ee346acbd4707963</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algebra</topic><topic>Analysis</topic><topic>Approximation</topic><topic>Boundaries</topic><topic>Flow velocity</topic><topic>Fluid flow</topic><topic>Fractures</topic><topic>Geometry</topic><topic>Incompressible flow</topic><topic>Incompressible fluids</topic><topic>Injection wells</topic><topic>Mathematical analysis</topic><topic>Mathematical Logic and Foundations</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Parameter estimation</topic><topic>Percolation</topic><topic>Porous media</topic><topic>Porous media flow</topic><topic>Probability Theory and Stochastic Processes</topic><topic>Two dimensional flow</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Legostaev, D. Yu</creatorcontrib><creatorcontrib>Rodionov, S. P.</creatorcontrib><collection>CrossRef</collection><jtitle>Lobachevskii journal of mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Legostaev, D. Yu</au><au>Rodionov, S. P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Numerical Investigation of the Structure of Fracture Network Impact on Interwell Conductivity</atitle><jtitle>Lobachevskii journal of mathematics</jtitle><stitle>Lobachevskii J Math</stitle><date>2024-05-01</date><risdate>2024</risdate><volume>45</volume><issue>5</issue><spage>2076</spage><epage>2084</epage><pages>2076-2084</pages><issn>1995-0802</issn><eissn>1818-9962</eissn><abstract>We consider two-dimensional single-phase fluid flow of an incompressible fluid in a fractured porous medium, which is located inside a square computational domain. The fractures had a random position and orientation, and the fracture length distribution follows a power law. Fracture networks are simulated using the discrete-fracture model. Calculations were performed for fracture network realizations created by multiple random generations. Fluid flows between opposite boundaries of the computational domain (line source and sink) and between vertical wells (point source and sink) are considered. The influence of the type of source and sink on the percolation probability is determined. The dependence of the flow rate between production and injection wells on the fracture network structure was investigated. The flow between the opposite boundaries of the computational domain is considered. For this case, the numerical dependence of the equivalent permeability of the fractured porous medium on the percolation parameter was approximated by an analytical piecewise function. This approximation was used to estimate fluid flow rates between vertical wells.</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.1134/S1995080224602261</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1995-0802 |
ispartof | Lobachevskii journal of mathematics, 2024-05, Vol.45 (5), p.2076-2084 |
issn | 1995-0802 1818-9962 |
language | eng |
recordid | cdi_proquest_journals_3098253135 |
source | SpringerLink Journals |
subjects | Algebra Analysis Approximation Boundaries Flow velocity Fluid flow Fractures Geometry Incompressible flow Incompressible fluids Injection wells Mathematical analysis Mathematical Logic and Foundations Mathematics Mathematics and Statistics Parameter estimation Percolation Porous media Porous media flow Probability Theory and Stochastic Processes Two dimensional flow |
title | Numerical Investigation of the Structure of Fracture Network Impact on Interwell Conductivity |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T23%3A34%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Numerical%20Investigation%20of%20the%20Structure%20of%20Fracture%20Network%20Impact%20on%20Interwell%20Conductivity&rft.jtitle=Lobachevskii%20journal%20of%20mathematics&rft.au=Legostaev,%20D.%20Yu&rft.date=2024-05-01&rft.volume=45&rft.issue=5&rft.spage=2076&rft.epage=2084&rft.pages=2076-2084&rft.issn=1995-0802&rft.eissn=1818-9962&rft_id=info:doi/10.1134/S1995080224602261&rft_dat=%3Cproquest_cross%3E3098253135%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3098253135&rft_id=info:pmid/&rfr_iscdi=true |