Numerical Investigation of the Structure of Fracture Network Impact on Interwell Conductivity

We consider two-dimensional single-phase fluid flow of an incompressible fluid in a fractured porous medium, which is located inside a square computational domain. The fractures had a random position and orientation, and the fracture length distribution follows a power law. Fracture networks are sim...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Lobachevskii journal of mathematics 2024-05, Vol.45 (5), p.2076-2084
Hauptverfasser: Legostaev, D. Yu, Rodionov, S. P.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2084
container_issue 5
container_start_page 2076
container_title Lobachevskii journal of mathematics
container_volume 45
creator Legostaev, D. Yu
Rodionov, S. P.
description We consider two-dimensional single-phase fluid flow of an incompressible fluid in a fractured porous medium, which is located inside a square computational domain. The fractures had a random position and orientation, and the fracture length distribution follows a power law. Fracture networks are simulated using the discrete-fracture model. Calculations were performed for fracture network realizations created by multiple random generations. Fluid flows between opposite boundaries of the computational domain (line source and sink) and between vertical wells (point source and sink) are considered. The influence of the type of source and sink on the percolation probability is determined. The dependence of the flow rate between production and injection wells on the fracture network structure was investigated. The flow between the opposite boundaries of the computational domain is considered. For this case, the numerical dependence of the equivalent permeability of the fractured porous medium on the percolation parameter was approximated by an analytical piecewise function. This approximation was used to estimate fluid flow rates between vertical wells.
doi_str_mv 10.1134/S1995080224602261
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3098253135</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3098253135</sourcerecordid><originalsourceid>FETCH-LOGICAL-c198t-4588b0ccdc0ddcac0e22ad3ea4223346556590cb46ccad778ee346acbd4707963</originalsourceid><addsrcrecordid>eNp1kE1LAzEQhoMoWKs_wFvA82q-NzlKsXah1EP1KEuapHXrdlOz2Zb-e7Os4EG8zAzvPO8MMwDcYnSPMWUPS6wURxIRwkQKAp-BEZZYZkoJcp7q1M76_iW4atst6hkhRuB90e1cqIyuYdEcXBurjY6Vb6Bfw_jh4DKGzsQuuF6YBj3UCxePPnzCYrdPCkx40UQXjq6u4cQ3NlmqQxVP1-BirevW3fzkMXibPr1OZtn85bmYPM4zg5WMGeNSrpAx1iBrjTbIEaItdZoRQikTnAuukFkxYYy2eS6dS6o2K8tylCtBx-BumLsP_qtLV5Rb34UmrSwpUpJwiilPFB4oE3zbBrcu96Ha6XAqMSr7L5Z_vpg8ZPC0iW02LvxO_t_0DZ2wdPA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3098253135</pqid></control><display><type>article</type><title>Numerical Investigation of the Structure of Fracture Network Impact on Interwell Conductivity</title><source>SpringerLink Journals</source><creator>Legostaev, D. Yu ; Rodionov, S. P.</creator><creatorcontrib>Legostaev, D. Yu ; Rodionov, S. P.</creatorcontrib><description>We consider two-dimensional single-phase fluid flow of an incompressible fluid in a fractured porous medium, which is located inside a square computational domain. The fractures had a random position and orientation, and the fracture length distribution follows a power law. Fracture networks are simulated using the discrete-fracture model. Calculations were performed for fracture network realizations created by multiple random generations. Fluid flows between opposite boundaries of the computational domain (line source and sink) and between vertical wells (point source and sink) are considered. The influence of the type of source and sink on the percolation probability is determined. The dependence of the flow rate between production and injection wells on the fracture network structure was investigated. The flow between the opposite boundaries of the computational domain is considered. For this case, the numerical dependence of the equivalent permeability of the fractured porous medium on the percolation parameter was approximated by an analytical piecewise function. This approximation was used to estimate fluid flow rates between vertical wells.</description><identifier>ISSN: 1995-0802</identifier><identifier>EISSN: 1818-9962</identifier><identifier>DOI: 10.1134/S1995080224602261</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>Algebra ; Analysis ; Approximation ; Boundaries ; Flow velocity ; Fluid flow ; Fractures ; Geometry ; Incompressible flow ; Incompressible fluids ; Injection wells ; Mathematical analysis ; Mathematical Logic and Foundations ; Mathematics ; Mathematics and Statistics ; Parameter estimation ; Percolation ; Porous media ; Porous media flow ; Probability Theory and Stochastic Processes ; Two dimensional flow</subject><ispartof>Lobachevskii journal of mathematics, 2024-05, Vol.45 (5), p.2076-2084</ispartof><rights>Pleiades Publishing, Ltd. 2024</rights><rights>Pleiades Publishing, Ltd. 2024.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c198t-4588b0ccdc0ddcac0e22ad3ea4223346556590cb46ccad778ee346acbd4707963</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1134/S1995080224602261$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1134/S1995080224602261$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Legostaev, D. Yu</creatorcontrib><creatorcontrib>Rodionov, S. P.</creatorcontrib><title>Numerical Investigation of the Structure of Fracture Network Impact on Interwell Conductivity</title><title>Lobachevskii journal of mathematics</title><addtitle>Lobachevskii J Math</addtitle><description>We consider two-dimensional single-phase fluid flow of an incompressible fluid in a fractured porous medium, which is located inside a square computational domain. The fractures had a random position and orientation, and the fracture length distribution follows a power law. Fracture networks are simulated using the discrete-fracture model. Calculations were performed for fracture network realizations created by multiple random generations. Fluid flows between opposite boundaries of the computational domain (line source and sink) and between vertical wells (point source and sink) are considered. The influence of the type of source and sink on the percolation probability is determined. The dependence of the flow rate between production and injection wells on the fracture network structure was investigated. The flow between the opposite boundaries of the computational domain is considered. For this case, the numerical dependence of the equivalent permeability of the fractured porous medium on the percolation parameter was approximated by an analytical piecewise function. This approximation was used to estimate fluid flow rates between vertical wells.</description><subject>Algebra</subject><subject>Analysis</subject><subject>Approximation</subject><subject>Boundaries</subject><subject>Flow velocity</subject><subject>Fluid flow</subject><subject>Fractures</subject><subject>Geometry</subject><subject>Incompressible flow</subject><subject>Incompressible fluids</subject><subject>Injection wells</subject><subject>Mathematical analysis</subject><subject>Mathematical Logic and Foundations</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Parameter estimation</subject><subject>Percolation</subject><subject>Porous media</subject><subject>Porous media flow</subject><subject>Probability Theory and Stochastic Processes</subject><subject>Two dimensional flow</subject><issn>1995-0802</issn><issn>1818-9962</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp1kE1LAzEQhoMoWKs_wFvA82q-NzlKsXah1EP1KEuapHXrdlOz2Zb-e7Os4EG8zAzvPO8MMwDcYnSPMWUPS6wURxIRwkQKAp-BEZZYZkoJcp7q1M76_iW4atst6hkhRuB90e1cqIyuYdEcXBurjY6Vb6Bfw_jh4DKGzsQuuF6YBj3UCxePPnzCYrdPCkx40UQXjq6u4cQ3NlmqQxVP1-BirevW3fzkMXibPr1OZtn85bmYPM4zg5WMGeNSrpAx1iBrjTbIEaItdZoRQikTnAuukFkxYYy2eS6dS6o2K8tylCtBx-BumLsP_qtLV5Rb34UmrSwpUpJwiilPFB4oE3zbBrcu96Ha6XAqMSr7L5Z_vpg8ZPC0iW02LvxO_t_0DZ2wdPA</recordid><startdate>20240501</startdate><enddate>20240501</enddate><creator>Legostaev, D. Yu</creator><creator>Rodionov, S. P.</creator><general>Pleiades Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20240501</creationdate><title>Numerical Investigation of the Structure of Fracture Network Impact on Interwell Conductivity</title><author>Legostaev, D. Yu ; Rodionov, S. P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c198t-4588b0ccdc0ddcac0e22ad3ea4223346556590cb46ccad778ee346acbd4707963</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algebra</topic><topic>Analysis</topic><topic>Approximation</topic><topic>Boundaries</topic><topic>Flow velocity</topic><topic>Fluid flow</topic><topic>Fractures</topic><topic>Geometry</topic><topic>Incompressible flow</topic><topic>Incompressible fluids</topic><topic>Injection wells</topic><topic>Mathematical analysis</topic><topic>Mathematical Logic and Foundations</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Parameter estimation</topic><topic>Percolation</topic><topic>Porous media</topic><topic>Porous media flow</topic><topic>Probability Theory and Stochastic Processes</topic><topic>Two dimensional flow</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Legostaev, D. Yu</creatorcontrib><creatorcontrib>Rodionov, S. P.</creatorcontrib><collection>CrossRef</collection><jtitle>Lobachevskii journal of mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Legostaev, D. Yu</au><au>Rodionov, S. P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Numerical Investigation of the Structure of Fracture Network Impact on Interwell Conductivity</atitle><jtitle>Lobachevskii journal of mathematics</jtitle><stitle>Lobachevskii J Math</stitle><date>2024-05-01</date><risdate>2024</risdate><volume>45</volume><issue>5</issue><spage>2076</spage><epage>2084</epage><pages>2076-2084</pages><issn>1995-0802</issn><eissn>1818-9962</eissn><abstract>We consider two-dimensional single-phase fluid flow of an incompressible fluid in a fractured porous medium, which is located inside a square computational domain. The fractures had a random position and orientation, and the fracture length distribution follows a power law. Fracture networks are simulated using the discrete-fracture model. Calculations were performed for fracture network realizations created by multiple random generations. Fluid flows between opposite boundaries of the computational domain (line source and sink) and between vertical wells (point source and sink) are considered. The influence of the type of source and sink on the percolation probability is determined. The dependence of the flow rate between production and injection wells on the fracture network structure was investigated. The flow between the opposite boundaries of the computational domain is considered. For this case, the numerical dependence of the equivalent permeability of the fractured porous medium on the percolation parameter was approximated by an analytical piecewise function. This approximation was used to estimate fluid flow rates between vertical wells.</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.1134/S1995080224602261</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1995-0802
ispartof Lobachevskii journal of mathematics, 2024-05, Vol.45 (5), p.2076-2084
issn 1995-0802
1818-9962
language eng
recordid cdi_proquest_journals_3098253135
source SpringerLink Journals
subjects Algebra
Analysis
Approximation
Boundaries
Flow velocity
Fluid flow
Fractures
Geometry
Incompressible flow
Incompressible fluids
Injection wells
Mathematical analysis
Mathematical Logic and Foundations
Mathematics
Mathematics and Statistics
Parameter estimation
Percolation
Porous media
Porous media flow
Probability Theory and Stochastic Processes
Two dimensional flow
title Numerical Investigation of the Structure of Fracture Network Impact on Interwell Conductivity
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T23%3A34%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Numerical%20Investigation%20of%20the%20Structure%20of%20Fracture%20Network%20Impact%20on%20Interwell%20Conductivity&rft.jtitle=Lobachevskii%20journal%20of%20mathematics&rft.au=Legostaev,%20D.%20Yu&rft.date=2024-05-01&rft.volume=45&rft.issue=5&rft.spage=2076&rft.epage=2084&rft.pages=2076-2084&rft.issn=1995-0802&rft.eissn=1818-9962&rft_id=info:doi/10.1134/S1995080224602261&rft_dat=%3Cproquest_cross%3E3098253135%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3098253135&rft_id=info:pmid/&rfr_iscdi=true