A hybrid method to solve reliability-cost-oriented bi-objective machine configuration problem for a flow shop system

Machine configuration is a crucial strategic decision in designing a flow shop system (FSS) and directly affects its performance. This involves selecting device suppliers and determining the number of machines to be configured. This study addresses a bi-objective optimization problem for an FSS that...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Annals of operations research 2024-09, Vol.340 (1), p.643-669
Hauptverfasser: Yeh, Cheng-Ta, Yeng, Louis Cheng-Lu, Lin, Yi-Kuei, Chao, Yu-Lun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 669
container_issue 1
container_start_page 643
container_title Annals of operations research
container_volume 340
creator Yeh, Cheng-Ta
Yeng, Louis Cheng-Lu
Lin, Yi-Kuei
Chao, Yu-Lun
description Machine configuration is a crucial strategic decision in designing a flow shop system (FSS) and directly affects its performance. This involves selecting device suppliers and determining the number of machines to be configured. This study addresses a bi-objective optimization problem for an FSS that considers repair actions and aims to determine the most suitable machine configuration that balances the production reliability and purchase cost. A nondominated sorting genetic algorithm II (NSGA-II) is used to determine all the Pareto solutions. The technique for order preference by similarity to an ideal solution is then used to identify a compromise alternative. It is necessary to assess the production reliability of any machine configuration identified by the NSGA-II. The FSS under the machine configuration is modeled as a multistate flow shop network, and Absorbing Markov Chain and Recursive Sum of Disjoint Products are integrated into the NSGA-II for reliability evaluation. The experimental results of solar cell manufacturing demonstrate the applicability of the proposed hybrid method and validate the efficiency of the NSGA-II compared with an improved strength Pareto evolutionary algorithm.
doi_str_mv 10.1007/s10479-023-05813-5
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3098030895</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3098030895</sourcerecordid><originalsourceid>FETCH-LOGICAL-c314t-ff102ed37dfbb8b63a18a6ea352c79972023e82178601ea9063e471f11b33ab53</originalsourceid><addsrcrecordid>eNp9kD1PwzAQhi0EEqXwB5gsMRvOuaZxxqriS0Jigdmyk3PrKomL7YL670kpEhvTLc_7cS9j1xJuJUB1lyTMqlpAgQJKJVGUJ2wiy6oQNaI6ZRMoypkoEeGcXaS0AQApVTlhecHXext9y3vK69DyHHgK3SfxSJ031nc-70UTUhYhehoytdx6EeyGmuxHrDfN2g_EmzA4v9pFk30Y-DYG21HPXYjccNeFL57WYcvTPmXqL9mZM12iq987Ze8P92_LJ_Hy-vi8XLyIBuUsC-ckFNRi1TprlZ2jkcrMyWBZNFVdV8X4LqlCVmoOkkwNc6RZJZ2UFtHYEqfs5ug71vnYUcp6E3ZxGCM1Qq0AQdUHqjhSTQwpRXJ6G31v4l5L0Id19XFdPcbpn3X1QYRHURrhYUXxz_of1TdX9X5q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3098030895</pqid></control><display><type>article</type><title>A hybrid method to solve reliability-cost-oriented bi-objective machine configuration problem for a flow shop system</title><source>SpringerLink Journals - AutoHoldings</source><creator>Yeh, Cheng-Ta ; Yeng, Louis Cheng-Lu ; Lin, Yi-Kuei ; Chao, Yu-Lun</creator><creatorcontrib>Yeh, Cheng-Ta ; Yeng, Louis Cheng-Lu ; Lin, Yi-Kuei ; Chao, Yu-Lun</creatorcontrib><description>Machine configuration is a crucial strategic decision in designing a flow shop system (FSS) and directly affects its performance. This involves selecting device suppliers and determining the number of machines to be configured. This study addresses a bi-objective optimization problem for an FSS that considers repair actions and aims to determine the most suitable machine configuration that balances the production reliability and purchase cost. A nondominated sorting genetic algorithm II (NSGA-II) is used to determine all the Pareto solutions. The technique for order preference by similarity to an ideal solution is then used to identify a compromise alternative. It is necessary to assess the production reliability of any machine configuration identified by the NSGA-II. The FSS under the machine configuration is modeled as a multistate flow shop network, and Absorbing Markov Chain and Recursive Sum of Disjoint Products are integrated into the NSGA-II for reliability evaluation. The experimental results of solar cell manufacturing demonstrate the applicability of the proposed hybrid method and validate the efficiency of the NSGA-II compared with an improved strength Pareto evolutionary algorithm.</description><identifier>ISSN: 0254-5330</identifier><identifier>EISSN: 1572-9338</identifier><identifier>DOI: 10.1007/s10479-023-05813-5</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Business and Management ; Combinatorics ; Configuration management ; Evolutionary algorithms ; Genetic algorithms ; Markov chains ; Network reliability ; Operations Research/Decision Theory ; Original Research ; Photovoltaic cells ; Reliability analysis ; Solar cells ; Sorting algorithms ; Theory of Computation</subject><ispartof>Annals of operations research, 2024-09, Vol.340 (1), p.643-669</ispartof><rights>The Author(s) 2024</rights><rights>The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c314t-ff102ed37dfbb8b63a18a6ea352c79972023e82178601ea9063e471f11b33ab53</cites><orcidid>0000-0001-8049-5696</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10479-023-05813-5$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10479-023-05813-5$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Yeh, Cheng-Ta</creatorcontrib><creatorcontrib>Yeng, Louis Cheng-Lu</creatorcontrib><creatorcontrib>Lin, Yi-Kuei</creatorcontrib><creatorcontrib>Chao, Yu-Lun</creatorcontrib><title>A hybrid method to solve reliability-cost-oriented bi-objective machine configuration problem for a flow shop system</title><title>Annals of operations research</title><addtitle>Ann Oper Res</addtitle><description>Machine configuration is a crucial strategic decision in designing a flow shop system (FSS) and directly affects its performance. This involves selecting device suppliers and determining the number of machines to be configured. This study addresses a bi-objective optimization problem for an FSS that considers repair actions and aims to determine the most suitable machine configuration that balances the production reliability and purchase cost. A nondominated sorting genetic algorithm II (NSGA-II) is used to determine all the Pareto solutions. The technique for order preference by similarity to an ideal solution is then used to identify a compromise alternative. It is necessary to assess the production reliability of any machine configuration identified by the NSGA-II. The FSS under the machine configuration is modeled as a multistate flow shop network, and Absorbing Markov Chain and Recursive Sum of Disjoint Products are integrated into the NSGA-II for reliability evaluation. The experimental results of solar cell manufacturing demonstrate the applicability of the proposed hybrid method and validate the efficiency of the NSGA-II compared with an improved strength Pareto evolutionary algorithm.</description><subject>Business and Management</subject><subject>Combinatorics</subject><subject>Configuration management</subject><subject>Evolutionary algorithms</subject><subject>Genetic algorithms</subject><subject>Markov chains</subject><subject>Network reliability</subject><subject>Operations Research/Decision Theory</subject><subject>Original Research</subject><subject>Photovoltaic cells</subject><subject>Reliability analysis</subject><subject>Solar cells</subject><subject>Sorting algorithms</subject><subject>Theory of Computation</subject><issn>0254-5330</issn><issn>1572-9338</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><recordid>eNp9kD1PwzAQhi0EEqXwB5gsMRvOuaZxxqriS0Jigdmyk3PrKomL7YL670kpEhvTLc_7cS9j1xJuJUB1lyTMqlpAgQJKJVGUJ2wiy6oQNaI6ZRMoypkoEeGcXaS0AQApVTlhecHXext9y3vK69DyHHgK3SfxSJ031nc-70UTUhYhehoytdx6EeyGmuxHrDfN2g_EmzA4v9pFk30Y-DYG21HPXYjccNeFL57WYcvTPmXqL9mZM12iq987Ze8P92_LJ_Hy-vi8XLyIBuUsC-ckFNRi1TprlZ2jkcrMyWBZNFVdV8X4LqlCVmoOkkwNc6RZJZ2UFtHYEqfs5ug71vnYUcp6E3ZxGCM1Qq0AQdUHqjhSTQwpRXJ6G31v4l5L0Id19XFdPcbpn3X1QYRHURrhYUXxz_of1TdX9X5q</recordid><startdate>20240901</startdate><enddate>20240901</enddate><creator>Yeh, Cheng-Ta</creator><creator>Yeng, Louis Cheng-Lu</creator><creator>Lin, Yi-Kuei</creator><creator>Chao, Yu-Lun</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TA</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><orcidid>https://orcid.org/0000-0001-8049-5696</orcidid></search><sort><creationdate>20240901</creationdate><title>A hybrid method to solve reliability-cost-oriented bi-objective machine configuration problem for a flow shop system</title><author>Yeh, Cheng-Ta ; Yeng, Louis Cheng-Lu ; Lin, Yi-Kuei ; Chao, Yu-Lun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c314t-ff102ed37dfbb8b63a18a6ea352c79972023e82178601ea9063e471f11b33ab53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Business and Management</topic><topic>Combinatorics</topic><topic>Configuration management</topic><topic>Evolutionary algorithms</topic><topic>Genetic algorithms</topic><topic>Markov chains</topic><topic>Network reliability</topic><topic>Operations Research/Decision Theory</topic><topic>Original Research</topic><topic>Photovoltaic cells</topic><topic>Reliability analysis</topic><topic>Solar cells</topic><topic>Sorting algorithms</topic><topic>Theory of Computation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yeh, Cheng-Ta</creatorcontrib><creatorcontrib>Yeng, Louis Cheng-Lu</creatorcontrib><creatorcontrib>Lin, Yi-Kuei</creatorcontrib><creatorcontrib>Chao, Yu-Lun</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><jtitle>Annals of operations research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yeh, Cheng-Ta</au><au>Yeng, Louis Cheng-Lu</au><au>Lin, Yi-Kuei</au><au>Chao, Yu-Lun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A hybrid method to solve reliability-cost-oriented bi-objective machine configuration problem for a flow shop system</atitle><jtitle>Annals of operations research</jtitle><stitle>Ann Oper Res</stitle><date>2024-09-01</date><risdate>2024</risdate><volume>340</volume><issue>1</issue><spage>643</spage><epage>669</epage><pages>643-669</pages><issn>0254-5330</issn><eissn>1572-9338</eissn><abstract>Machine configuration is a crucial strategic decision in designing a flow shop system (FSS) and directly affects its performance. This involves selecting device suppliers and determining the number of machines to be configured. This study addresses a bi-objective optimization problem for an FSS that considers repair actions and aims to determine the most suitable machine configuration that balances the production reliability and purchase cost. A nondominated sorting genetic algorithm II (NSGA-II) is used to determine all the Pareto solutions. The technique for order preference by similarity to an ideal solution is then used to identify a compromise alternative. It is necessary to assess the production reliability of any machine configuration identified by the NSGA-II. The FSS under the machine configuration is modeled as a multistate flow shop network, and Absorbing Markov Chain and Recursive Sum of Disjoint Products are integrated into the NSGA-II for reliability evaluation. The experimental results of solar cell manufacturing demonstrate the applicability of the proposed hybrid method and validate the efficiency of the NSGA-II compared with an improved strength Pareto evolutionary algorithm.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10479-023-05813-5</doi><tpages>27</tpages><orcidid>https://orcid.org/0000-0001-8049-5696</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0254-5330
ispartof Annals of operations research, 2024-09, Vol.340 (1), p.643-669
issn 0254-5330
1572-9338
language eng
recordid cdi_proquest_journals_3098030895
source SpringerLink Journals - AutoHoldings
subjects Business and Management
Combinatorics
Configuration management
Evolutionary algorithms
Genetic algorithms
Markov chains
Network reliability
Operations Research/Decision Theory
Original Research
Photovoltaic cells
Reliability analysis
Solar cells
Sorting algorithms
Theory of Computation
title A hybrid method to solve reliability-cost-oriented bi-objective machine configuration problem for a flow shop system
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T15%3A58%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20hybrid%20method%20to%20solve%20reliability-cost-oriented%20bi-objective%20machine%20configuration%20problem%20for%20a%20flow%20shop%20system&rft.jtitle=Annals%20of%20operations%20research&rft.au=Yeh,%20Cheng-Ta&rft.date=2024-09-01&rft.volume=340&rft.issue=1&rft.spage=643&rft.epage=669&rft.pages=643-669&rft.issn=0254-5330&rft.eissn=1572-9338&rft_id=info:doi/10.1007/s10479-023-05813-5&rft_dat=%3Cproquest_cross%3E3098030895%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3098030895&rft_id=info:pmid/&rfr_iscdi=true