Assessment of Lignin Residues from Bioethanol Production of Olive Stones as Green Chemical Thickener of Epoxidized Linseed Oil
This work focused on the characterization of lignin residues from bioethanol production of olive stones (OS) and the use of these residues to chemically thicken epoxidized linseed oil (ELO). OS were processed by an acid/steam explosion pretreatment, followed by pre-saccharification, using different...
Gespeichert in:
Veröffentlicht in: | Journal of polymers and the environment 2024-09, Vol.32 (9), p.4507-4524 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 4524 |
---|---|
container_issue | 9 |
container_start_page | 4507 |
container_title | Journal of polymers and the environment |
container_volume | 32 |
creator | Cortés-Triviño, E. Valencia, C. Franco, J. M. Oliva, J. M. Manzanares, P. Eugenio, M. E. Ibarra, D. |
description | This work focused on the characterization of lignin residues from bioethanol production of olive stones (OS) and the use of these residues to chemically thicken epoxidized linseed oil (ELO). OS were processed by an acid/steam explosion pretreatment, followed by pre-saccharification, using different enzyme dosages, and simultaneous saccharification and fermentation. The chemical composition of the OS lignin residues was analysed, revealing a high lignin content (66.6–69.5%), and lower quantities of glucan (17.4–19.3%) and xylan (2.8–2.9%). Whereas, the structural properties of OS lignin residues were characterized by Fourier-transform infrared (FTIR) spectroscopy, nuclear magnetic resonance (NMR), thermogravimetric analysis and size exclusion chromatography (SEC). OS lignin residues displayed the main inter-unit linkages (β–β′ resinol (51.0–59.0%), followed by β-O-4′ alkyl aryl ethers (27.0–35.2%) and β-5′ phenylcoumaran (11.4–13.2%) substructures), high molecular weights (22,000–25900 Da), low S/G ratios (1.2–1.5) and phenolic groups content (48–55 mg GAE/g lignin). Moreover, OS lignin residues were dispersed in ELO to obtain thickened formulations, which were characterized by FTIR and NMR. Oil thickening was achieved by promoting the chemical crosslinking between lignocellulose hydroxyl groups and ELO epoxy groups, enabling the compatibilization of both components. Up to tenfold viscosity increment of the resulting thickened formulations in relation to ELO’s viscosity was observed. Besides, thickened formulations exhibited viscoelastic properties, evincing oil structuration to some extent.
Graphical Abstract |
doi_str_mv | 10.1007/s10924-024-03216-6 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3098005178</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3098005178</sourcerecordid><originalsourceid>FETCH-LOGICAL-c347t-784f637bba78bc00348a90de11a16768ab35aa25e10c960f496d5c869f8f201c3</originalsourceid><addsrcrecordid>eNp9kU1v1DAQhiMEEqXwBzhZ4sIldBwn_jiWVSmVVtoKytnyOpOuS2IvnmxVOPDb62grVeLAYfTO4XnnQ29VvefwiQOoM-JgmraGpUTDZS1fVCe8U02tDTcvl17Kuula8bp6Q3QHAKYYT6q_50RINGGcWRrYOtzGENk3pNAfkNiQ08Q-h4TzzsU0suuc-oOfQ4oLvRnDPbLvc4oFdcQuM2Jkqx1OwbuR3eyC_4kR88Je7NND6MMf7MuSSFh0E8a31avBjYTvnvS0-vHl4mb1tV5vLq9W5-vai1bNtdLtIIXabp3SWw8gWu0M9Mi541JJ7baic67pkIM3EobWyL7zWppBDw1wL06rj8e5-5x-lcdmOwXyOI4uYjqQFbwTSgmt24J--Ae9S4ccy3VWgNEAHVe6UM2R8jkRZRzsPofJ5d-Wg10iscdILCy1RGJlMYmjiQocbzE_j_6P6xFIY46t</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3098005178</pqid></control><display><type>article</type><title>Assessment of Lignin Residues from Bioethanol Production of Olive Stones as Green Chemical Thickener of Epoxidized Linseed Oil</title><source>SpringerLink Journals - AutoHoldings</source><creator>Cortés-Triviño, E. ; Valencia, C. ; Franco, J. M. ; Oliva, J. M. ; Manzanares, P. ; Eugenio, M. E. ; Ibarra, D.</creator><creatorcontrib>Cortés-Triviño, E. ; Valencia, C. ; Franco, J. M. ; Oliva, J. M. ; Manzanares, P. ; Eugenio, M. E. ; Ibarra, D.</creatorcontrib><description>This work focused on the characterization of lignin residues from bioethanol production of olive stones (OS) and the use of these residues to chemically thicken epoxidized linseed oil (ELO). OS were processed by an acid/steam explosion pretreatment, followed by pre-saccharification, using different enzyme dosages, and simultaneous saccharification and fermentation. The chemical composition of the OS lignin residues was analysed, revealing a high lignin content (66.6–69.5%), and lower quantities of glucan (17.4–19.3%) and xylan (2.8–2.9%). Whereas, the structural properties of OS lignin residues were characterized by Fourier-transform infrared (FTIR) spectroscopy, nuclear magnetic resonance (NMR), thermogravimetric analysis and size exclusion chromatography (SEC). OS lignin residues displayed the main inter-unit linkages (β–β′ resinol (51.0–59.0%), followed by β-O-4′ alkyl aryl ethers (27.0–35.2%) and β-5′ phenylcoumaran (11.4–13.2%) substructures), high molecular weights (22,000–25900 Da), low S/G ratios (1.2–1.5) and phenolic groups content (48–55 mg GAE/g lignin). Moreover, OS lignin residues were dispersed in ELO to obtain thickened formulations, which were characterized by FTIR and NMR. Oil thickening was achieved by promoting the chemical crosslinking between lignocellulose hydroxyl groups and ELO epoxy groups, enabling the compatibilization of both components. Up to tenfold viscosity increment of the resulting thickened formulations in relation to ELO’s viscosity was observed. Besides, thickened formulations exhibited viscoelastic properties, evincing oil structuration to some extent.
Graphical Abstract</description><identifier>ISSN: 1566-2543</identifier><identifier>EISSN: 1572-8919</identifier><identifier>DOI: 10.1007/s10924-024-03216-6</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Biofuels ; Chemical composition ; Chemistry ; Chemistry and Materials Science ; Crosslinking ; Environmental Chemistry ; Environmental Engineering/Biotechnology ; enzymes ; epoxides ; Ethanol ; ethanol production ; Ethers ; Fermentation ; Fourier transforms ; gel chromatography ; Glucan ; glucans ; Hydroxyl groups ; Industrial Chemistry/Chemical Engineering ; Infrared analysis ; Infrared spectroscopy ; Lignin ; lignin content ; Lignocellulose ; Linseed oil ; Magnetic properties ; Materials Science ; NMR ; Nuclear magnetic resonance ; nuclear magnetic resonance spectroscopy ; Oils & fats ; olives ; Original Paper ; Phenolic compounds ; Phenols ; Polymer Sciences ; Residues ; Saccharification ; Size exclusion chromatography ; Steam explosions ; Thermogravimetric analysis ; thermogravimetry ; thickeners ; Viscoelasticity ; Viscosity ; Xylan</subject><ispartof>Journal of polymers and the environment, 2024-09, Vol.32 (9), p.4507-4524</ispartof><rights>The Author(s) 2024</rights><rights>The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c347t-784f637bba78bc00348a90de11a16768ab35aa25e10c960f496d5c869f8f201c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10924-024-03216-6$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10924-024-03216-6$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51297</link.rule.ids></links><search><creatorcontrib>Cortés-Triviño, E.</creatorcontrib><creatorcontrib>Valencia, C.</creatorcontrib><creatorcontrib>Franco, J. M.</creatorcontrib><creatorcontrib>Oliva, J. M.</creatorcontrib><creatorcontrib>Manzanares, P.</creatorcontrib><creatorcontrib>Eugenio, M. E.</creatorcontrib><creatorcontrib>Ibarra, D.</creatorcontrib><title>Assessment of Lignin Residues from Bioethanol Production of Olive Stones as Green Chemical Thickener of Epoxidized Linseed Oil</title><title>Journal of polymers and the environment</title><addtitle>J Polym Environ</addtitle><description>This work focused on the characterization of lignin residues from bioethanol production of olive stones (OS) and the use of these residues to chemically thicken epoxidized linseed oil (ELO). OS were processed by an acid/steam explosion pretreatment, followed by pre-saccharification, using different enzyme dosages, and simultaneous saccharification and fermentation. The chemical composition of the OS lignin residues was analysed, revealing a high lignin content (66.6–69.5%), and lower quantities of glucan (17.4–19.3%) and xylan (2.8–2.9%). Whereas, the structural properties of OS lignin residues were characterized by Fourier-transform infrared (FTIR) spectroscopy, nuclear magnetic resonance (NMR), thermogravimetric analysis and size exclusion chromatography (SEC). OS lignin residues displayed the main inter-unit linkages (β–β′ resinol (51.0–59.0%), followed by β-O-4′ alkyl aryl ethers (27.0–35.2%) and β-5′ phenylcoumaran (11.4–13.2%) substructures), high molecular weights (22,000–25900 Da), low S/G ratios (1.2–1.5) and phenolic groups content (48–55 mg GAE/g lignin). Moreover, OS lignin residues were dispersed in ELO to obtain thickened formulations, which were characterized by FTIR and NMR. Oil thickening was achieved by promoting the chemical crosslinking between lignocellulose hydroxyl groups and ELO epoxy groups, enabling the compatibilization of both components. Up to tenfold viscosity increment of the resulting thickened formulations in relation to ELO’s viscosity was observed. Besides, thickened formulations exhibited viscoelastic properties, evincing oil structuration to some extent.
Graphical Abstract</description><subject>Biofuels</subject><subject>Chemical composition</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Crosslinking</subject><subject>Environmental Chemistry</subject><subject>Environmental Engineering/Biotechnology</subject><subject>enzymes</subject><subject>epoxides</subject><subject>Ethanol</subject><subject>ethanol production</subject><subject>Ethers</subject><subject>Fermentation</subject><subject>Fourier transforms</subject><subject>gel chromatography</subject><subject>Glucan</subject><subject>glucans</subject><subject>Hydroxyl groups</subject><subject>Industrial Chemistry/Chemical Engineering</subject><subject>Infrared analysis</subject><subject>Infrared spectroscopy</subject><subject>Lignin</subject><subject>lignin content</subject><subject>Lignocellulose</subject><subject>Linseed oil</subject><subject>Magnetic properties</subject><subject>Materials Science</subject><subject>NMR</subject><subject>Nuclear magnetic resonance</subject><subject>nuclear magnetic resonance spectroscopy</subject><subject>Oils & fats</subject><subject>olives</subject><subject>Original Paper</subject><subject>Phenolic compounds</subject><subject>Phenols</subject><subject>Polymer Sciences</subject><subject>Residues</subject><subject>Saccharification</subject><subject>Size exclusion chromatography</subject><subject>Steam explosions</subject><subject>Thermogravimetric analysis</subject><subject>thermogravimetry</subject><subject>thickeners</subject><subject>Viscoelasticity</subject><subject>Viscosity</subject><subject>Xylan</subject><issn>1566-2543</issn><issn>1572-8919</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><recordid>eNp9kU1v1DAQhiMEEqXwBzhZ4sIldBwn_jiWVSmVVtoKytnyOpOuS2IvnmxVOPDb62grVeLAYfTO4XnnQ29VvefwiQOoM-JgmraGpUTDZS1fVCe8U02tDTcvl17Kuula8bp6Q3QHAKYYT6q_50RINGGcWRrYOtzGENk3pNAfkNiQ08Q-h4TzzsU0suuc-oOfQ4oLvRnDPbLvc4oFdcQuM2Jkqx1OwbuR3eyC_4kR88Je7NND6MMf7MuSSFh0E8a31avBjYTvnvS0-vHl4mb1tV5vLq9W5-vai1bNtdLtIIXabp3SWw8gWu0M9Mi541JJ7baic67pkIM3EobWyL7zWppBDw1wL06rj8e5-5x-lcdmOwXyOI4uYjqQFbwTSgmt24J--Ae9S4ccy3VWgNEAHVe6UM2R8jkRZRzsPofJ5d-Wg10iscdILCy1RGJlMYmjiQocbzE_j_6P6xFIY46t</recordid><startdate>20240901</startdate><enddate>20240901</enddate><creator>Cortés-Triviño, E.</creator><creator>Valencia, C.</creator><creator>Franco, J. M.</creator><creator>Oliva, J. M.</creator><creator>Manzanares, P.</creator><creator>Eugenio, M. E.</creator><creator>Ibarra, D.</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>JG9</scope><scope>7S9</scope><scope>L.6</scope></search><sort><creationdate>20240901</creationdate><title>Assessment of Lignin Residues from Bioethanol Production of Olive Stones as Green Chemical Thickener of Epoxidized Linseed Oil</title><author>Cortés-Triviño, E. ; Valencia, C. ; Franco, J. M. ; Oliva, J. M. ; Manzanares, P. ; Eugenio, M. E. ; Ibarra, D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c347t-784f637bba78bc00348a90de11a16768ab35aa25e10c960f496d5c869f8f201c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Biofuels</topic><topic>Chemical composition</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Crosslinking</topic><topic>Environmental Chemistry</topic><topic>Environmental Engineering/Biotechnology</topic><topic>enzymes</topic><topic>epoxides</topic><topic>Ethanol</topic><topic>ethanol production</topic><topic>Ethers</topic><topic>Fermentation</topic><topic>Fourier transforms</topic><topic>gel chromatography</topic><topic>Glucan</topic><topic>glucans</topic><topic>Hydroxyl groups</topic><topic>Industrial Chemistry/Chemical Engineering</topic><topic>Infrared analysis</topic><topic>Infrared spectroscopy</topic><topic>Lignin</topic><topic>lignin content</topic><topic>Lignocellulose</topic><topic>Linseed oil</topic><topic>Magnetic properties</topic><topic>Materials Science</topic><topic>NMR</topic><topic>Nuclear magnetic resonance</topic><topic>nuclear magnetic resonance spectroscopy</topic><topic>Oils & fats</topic><topic>olives</topic><topic>Original Paper</topic><topic>Phenolic compounds</topic><topic>Phenols</topic><topic>Polymer Sciences</topic><topic>Residues</topic><topic>Saccharification</topic><topic>Size exclusion chromatography</topic><topic>Steam explosions</topic><topic>Thermogravimetric analysis</topic><topic>thermogravimetry</topic><topic>thickeners</topic><topic>Viscoelasticity</topic><topic>Viscosity</topic><topic>Xylan</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cortés-Triviño, E.</creatorcontrib><creatorcontrib>Valencia, C.</creatorcontrib><creatorcontrib>Franco, J. M.</creatorcontrib><creatorcontrib>Oliva, J. M.</creatorcontrib><creatorcontrib>Manzanares, P.</creatorcontrib><creatorcontrib>Eugenio, M. E.</creatorcontrib><creatorcontrib>Ibarra, D.</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><jtitle>Journal of polymers and the environment</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cortés-Triviño, E.</au><au>Valencia, C.</au><au>Franco, J. M.</au><au>Oliva, J. M.</au><au>Manzanares, P.</au><au>Eugenio, M. E.</au><au>Ibarra, D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Assessment of Lignin Residues from Bioethanol Production of Olive Stones as Green Chemical Thickener of Epoxidized Linseed Oil</atitle><jtitle>Journal of polymers and the environment</jtitle><stitle>J Polym Environ</stitle><date>2024-09-01</date><risdate>2024</risdate><volume>32</volume><issue>9</issue><spage>4507</spage><epage>4524</epage><pages>4507-4524</pages><issn>1566-2543</issn><eissn>1572-8919</eissn><abstract>This work focused on the characterization of lignin residues from bioethanol production of olive stones (OS) and the use of these residues to chemically thicken epoxidized linseed oil (ELO). OS were processed by an acid/steam explosion pretreatment, followed by pre-saccharification, using different enzyme dosages, and simultaneous saccharification and fermentation. The chemical composition of the OS lignin residues was analysed, revealing a high lignin content (66.6–69.5%), and lower quantities of glucan (17.4–19.3%) and xylan (2.8–2.9%). Whereas, the structural properties of OS lignin residues were characterized by Fourier-transform infrared (FTIR) spectroscopy, nuclear magnetic resonance (NMR), thermogravimetric analysis and size exclusion chromatography (SEC). OS lignin residues displayed the main inter-unit linkages (β–β′ resinol (51.0–59.0%), followed by β-O-4′ alkyl aryl ethers (27.0–35.2%) and β-5′ phenylcoumaran (11.4–13.2%) substructures), high molecular weights (22,000–25900 Da), low S/G ratios (1.2–1.5) and phenolic groups content (48–55 mg GAE/g lignin). Moreover, OS lignin residues were dispersed in ELO to obtain thickened formulations, which were characterized by FTIR and NMR. Oil thickening was achieved by promoting the chemical crosslinking between lignocellulose hydroxyl groups and ELO epoxy groups, enabling the compatibilization of both components. Up to tenfold viscosity increment of the resulting thickened formulations in relation to ELO’s viscosity was observed. Besides, thickened formulations exhibited viscoelastic properties, evincing oil structuration to some extent.
Graphical Abstract</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10924-024-03216-6</doi><tpages>18</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1566-2543 |
ispartof | Journal of polymers and the environment, 2024-09, Vol.32 (9), p.4507-4524 |
issn | 1566-2543 1572-8919 |
language | eng |
recordid | cdi_proquest_journals_3098005178 |
source | SpringerLink Journals - AutoHoldings |
subjects | Biofuels Chemical composition Chemistry Chemistry and Materials Science Crosslinking Environmental Chemistry Environmental Engineering/Biotechnology enzymes epoxides Ethanol ethanol production Ethers Fermentation Fourier transforms gel chromatography Glucan glucans Hydroxyl groups Industrial Chemistry/Chemical Engineering Infrared analysis Infrared spectroscopy Lignin lignin content Lignocellulose Linseed oil Magnetic properties Materials Science NMR Nuclear magnetic resonance nuclear magnetic resonance spectroscopy Oils & fats olives Original Paper Phenolic compounds Phenols Polymer Sciences Residues Saccharification Size exclusion chromatography Steam explosions Thermogravimetric analysis thermogravimetry thickeners Viscoelasticity Viscosity Xylan |
title | Assessment of Lignin Residues from Bioethanol Production of Olive Stones as Green Chemical Thickener of Epoxidized Linseed Oil |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T17%3A01%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Assessment%20of%20Lignin%20Residues%20from%20Bioethanol%20Production%20of%20Olive%20Stones%20as%20Green%20Chemical%20Thickener%20of%20Epoxidized%20Linseed%20Oil&rft.jtitle=Journal%20of%20polymers%20and%20the%20environment&rft.au=Cort%C3%A9s-Trivi%C3%B1o,%20E.&rft.date=2024-09-01&rft.volume=32&rft.issue=9&rft.spage=4507&rft.epage=4524&rft.pages=4507-4524&rft.issn=1566-2543&rft.eissn=1572-8919&rft_id=info:doi/10.1007/s10924-024-03216-6&rft_dat=%3Cproquest_cross%3E3098005178%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3098005178&rft_id=info:pmid/&rfr_iscdi=true |