Time-space encoded readout for noise suppression and scalable scanning in optically active solid-state spin systems
Optically active solid-state spin systems play an important role in quantum technologies. We introduce a new readout scheme, termed Time to Space (T2S) encoding which decouples spin manipulation from optical readout both temporally and spatially. This is achieved by controlling the spin state within...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2024-08 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Leibold, Joachim P von Grafenstein, Nick R Chen, Xiaoxun Müller, Linda Briegel, Karl D Bucher, Dominik B |
description | Optically active solid-state spin systems play an important role in quantum technologies. We introduce a new readout scheme, termed Time to Space (T2S) encoding which decouples spin manipulation from optical readout both temporally and spatially. This is achieved by controlling the spin state within a region of interest, followed by rapid scanning of the optical readout position using an acousto-optic modulator. Time tracking allows the optical readout position to be encoded as a function of time. Using nitrogen-vacancy (NV) center ensembles in diamond, we first demonstrate that the T2S scheme enables correlated experiments for efficient common mode noise cancellation in various nano- and microscale sensing scenarios. In the second example, we show highly scalable multi-pixel imaging that does not require a camera and has the potential to accelerate data acquisition by several hundred times compared to conventional scanning methods. We anticipate widespread adoption of this technique, as it requires no additional components beyond those commonly used in optically addressable spin systems. |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_3097958210</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3097958210</sourcerecordid><originalsourceid>FETCH-proquest_journals_30979582103</originalsourceid><addsrcrecordid>eNqNiksKAjEQBYMgKOodGlwPxMTxsxbFA7iXOGklErtjOiN4eyN4AFeveFUDNTbWLprN0piRmonctdZmtTZta8dKTuGBjSTXISB17NFDRue5L3DlDMRBEKRPKaNIYAJHHqRz0V0ifoEo0A0CAacS6h_f4LoSXlVyDL6R4krlVAt5S8GHTNXw6qLg7LcTNT_sT7tjkzI_e5RyvnOfqaqz1dv1tt2Yhbb_VR9LXEzo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3097958210</pqid></control><display><type>article</type><title>Time-space encoded readout for noise suppression and scalable scanning in optically active solid-state spin systems</title><source>Free E- Journals</source><creator>Leibold, Joachim P ; von Grafenstein, Nick R ; Chen, Xiaoxun ; Müller, Linda ; Briegel, Karl D ; Bucher, Dominik B</creator><creatorcontrib>Leibold, Joachim P ; von Grafenstein, Nick R ; Chen, Xiaoxun ; Müller, Linda ; Briegel, Karl D ; Bucher, Dominik B</creatorcontrib><description>Optically active solid-state spin systems play an important role in quantum technologies. We introduce a new readout scheme, termed Time to Space (T2S) encoding which decouples spin manipulation from optical readout both temporally and spatially. This is achieved by controlling the spin state within a region of interest, followed by rapid scanning of the optical readout position using an acousto-optic modulator. Time tracking allows the optical readout position to be encoded as a function of time. Using nitrogen-vacancy (NV) center ensembles in diamond, we first demonstrate that the T2S scheme enables correlated experiments for efficient common mode noise cancellation in various nano- and microscale sensing scenarios. In the second example, we show highly scalable multi-pixel imaging that does not require a camera and has the potential to accelerate data acquisition by several hundred times compared to conventional scanning methods. We anticipate widespread adoption of this technique, as it requires no additional components beyond those commonly used in optically addressable spin systems.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Acousto-optics ; Acoustooptical devices ; Coding ; Data acquisition ; Noise reduction ; Optical activity ; Solid state</subject><ispartof>arXiv.org, 2024-08</ispartof><rights>2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>Leibold, Joachim P</creatorcontrib><creatorcontrib>von Grafenstein, Nick R</creatorcontrib><creatorcontrib>Chen, Xiaoxun</creatorcontrib><creatorcontrib>Müller, Linda</creatorcontrib><creatorcontrib>Briegel, Karl D</creatorcontrib><creatorcontrib>Bucher, Dominik B</creatorcontrib><title>Time-space encoded readout for noise suppression and scalable scanning in optically active solid-state spin systems</title><title>arXiv.org</title><description>Optically active solid-state spin systems play an important role in quantum technologies. We introduce a new readout scheme, termed Time to Space (T2S) encoding which decouples spin manipulation from optical readout both temporally and spatially. This is achieved by controlling the spin state within a region of interest, followed by rapid scanning of the optical readout position using an acousto-optic modulator. Time tracking allows the optical readout position to be encoded as a function of time. Using nitrogen-vacancy (NV) center ensembles in diamond, we first demonstrate that the T2S scheme enables correlated experiments for efficient common mode noise cancellation in various nano- and microscale sensing scenarios. In the second example, we show highly scalable multi-pixel imaging that does not require a camera and has the potential to accelerate data acquisition by several hundred times compared to conventional scanning methods. We anticipate widespread adoption of this technique, as it requires no additional components beyond those commonly used in optically addressable spin systems.</description><subject>Acousto-optics</subject><subject>Acoustooptical devices</subject><subject>Coding</subject><subject>Data acquisition</subject><subject>Noise reduction</subject><subject>Optical activity</subject><subject>Solid state</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNiksKAjEQBYMgKOodGlwPxMTxsxbFA7iXOGklErtjOiN4eyN4AFeveFUDNTbWLprN0piRmonctdZmtTZta8dKTuGBjSTXISB17NFDRue5L3DlDMRBEKRPKaNIYAJHHqRz0V0ifoEo0A0CAacS6h_f4LoSXlVyDL6R4krlVAt5S8GHTNXw6qLg7LcTNT_sT7tjkzI_e5RyvnOfqaqz1dv1tt2Yhbb_VR9LXEzo</recordid><startdate>20240827</startdate><enddate>20240827</enddate><creator>Leibold, Joachim P</creator><creator>von Grafenstein, Nick R</creator><creator>Chen, Xiaoxun</creator><creator>Müller, Linda</creator><creator>Briegel, Karl D</creator><creator>Bucher, Dominik B</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20240827</creationdate><title>Time-space encoded readout for noise suppression and scalable scanning in optically active solid-state spin systems</title><author>Leibold, Joachim P ; von Grafenstein, Nick R ; Chen, Xiaoxun ; Müller, Linda ; Briegel, Karl D ; Bucher, Dominik B</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_30979582103</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Acousto-optics</topic><topic>Acoustooptical devices</topic><topic>Coding</topic><topic>Data acquisition</topic><topic>Noise reduction</topic><topic>Optical activity</topic><topic>Solid state</topic><toplevel>online_resources</toplevel><creatorcontrib>Leibold, Joachim P</creatorcontrib><creatorcontrib>von Grafenstein, Nick R</creatorcontrib><creatorcontrib>Chen, Xiaoxun</creatorcontrib><creatorcontrib>Müller, Linda</creatorcontrib><creatorcontrib>Briegel, Karl D</creatorcontrib><creatorcontrib>Bucher, Dominik B</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Leibold, Joachim P</au><au>von Grafenstein, Nick R</au><au>Chen, Xiaoxun</au><au>Müller, Linda</au><au>Briegel, Karl D</au><au>Bucher, Dominik B</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Time-space encoded readout for noise suppression and scalable scanning in optically active solid-state spin systems</atitle><jtitle>arXiv.org</jtitle><date>2024-08-27</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>Optically active solid-state spin systems play an important role in quantum technologies. We introduce a new readout scheme, termed Time to Space (T2S) encoding which decouples spin manipulation from optical readout both temporally and spatially. This is achieved by controlling the spin state within a region of interest, followed by rapid scanning of the optical readout position using an acousto-optic modulator. Time tracking allows the optical readout position to be encoded as a function of time. Using nitrogen-vacancy (NV) center ensembles in diamond, we first demonstrate that the T2S scheme enables correlated experiments for efficient common mode noise cancellation in various nano- and microscale sensing scenarios. In the second example, we show highly scalable multi-pixel imaging that does not require a camera and has the potential to accelerate data acquisition by several hundred times compared to conventional scanning methods. We anticipate widespread adoption of this technique, as it requires no additional components beyond those commonly used in optically addressable spin systems.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2024-08 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_3097958210 |
source | Free E- Journals |
subjects | Acousto-optics Acoustooptical devices Coding Data acquisition Noise reduction Optical activity Solid state |
title | Time-space encoded readout for noise suppression and scalable scanning in optically active solid-state spin systems |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T11%3A39%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Time-space%20encoded%20readout%20for%20noise%20suppression%20and%20scalable%20scanning%20in%20optically%20active%20solid-state%20spin%20systems&rft.jtitle=arXiv.org&rft.au=Leibold,%20Joachim%20P&rft.date=2024-08-27&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E3097958210%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3097958210&rft_id=info:pmid/&rfr_iscdi=true |