Solar-driven photocatalytic nitrogen fixation on transition metal-doped covalent organic frameworks: First-principles study

Designing highly efficient single-atom catalysts for converting nitrogen into ammonia under ambient temperature conditions holds significant importance. Current research predominantly focuses on electrocatalytic nitrogen fixation, but compared to that, photocatalytic nitrogen fixation requires only...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied physics letters 2024-08, Vol.125 (9)
Hauptverfasser: Hong, Wen-qing, Ao, Zhi-Min, Xu, Ying
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 9
container_start_page
container_title Applied physics letters
container_volume 125
creator Hong, Wen-qing
Ao, Zhi-Min
Xu, Ying
description Designing highly efficient single-atom catalysts for converting nitrogen into ammonia under ambient temperature conditions holds significant importance. Current research predominantly focuses on electrocatalytic nitrogen fixation, but compared to that, photocatalytic nitrogen fixation requires only sunlight as an energy source, making it more environmentally friendly and cost-effective. Developing efficient nitrogen reduction reaction (NRR) photocatalysts presents a promising yet highly challenging task. Two-dimensional (2D) covalent organic frameworks (COFs) have garnered interest because of their elevated surface area and regular pore structure. This study employs density functional theory calculations to investigate the potential of NRR photocatalysts using the 2D COF TMT-TFPT-COF (TT-COF) supported with 18 different transition metal atoms (TM = Rh, Nb, Os, Mo, Ru, Pt, Ni, Co, V, Cu, Fe, Re, W, Cr, Ta, Mn, Pd, Ti). Through a four-step selection process, the most promising photocatalyst is identified. The results indicate that a single Re atom loaded onto TT-COF (Re@TT-COF) displays the optimal nitrogen fixation performance, demonstrating excellent catalytic activity and selectivity with a limiting potential of only −0.30 V. Furthermore, its good light absorption efficiency, suitable band edge position, and significant photo-generated electron potential enable spontaneous nitrogen fixation. Our study provides useful guidance for the rational design of COF-based NRR photocatalysts with high activity, stability, and selectivity.
doi_str_mv 10.1063/5.0223392
format Article
fullrecord <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_proquest_journals_3097930059</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3097930059</sourcerecordid><originalsourceid>FETCH-LOGICAL-c182t-dc665774cfed096692d23ced483d2ffb19b6c53bfaf308ad49f8303e49ead3ff3</originalsourceid><addsrcrecordid>eNp9kEtLAzEQgIMoWKsH_8GCJ4XUZGdf8SalVaHgQT0vaR41dZusSVot_nlj27MwMMzwzYMPoUtKRpRUcFuOSJ4DsPwIDSipawyUNsdoQAgBXLGSnqKzEJapLBM2QD8vruMeS282ymb9u4tO8Mi7bTQisyZ6t0h9bb55NM5mKaLnNphdtVKJxNL1SmbCbXinbMycX3CbhrXnK_Xl_Ee4y6bGh4h7b6wwfadCFuJabs_RieZdUBeHPERv08nr-BHPnh-exvczLGiTRyxFVZV1XQitJGFVxXKZg1CyaEDmWs8pm1eihLnmGkjDZcF0AwRUwRSXoDUM0dV-b-_d51qF2C7d2tt0sgXCagZJBkvU9Z4S3oXglW7Tvyvuty0l7Z_btmwPbhN7s2eDMHFn5h_4F36-fMo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3097930059</pqid></control><display><type>article</type><title>Solar-driven photocatalytic nitrogen fixation on transition metal-doped covalent organic frameworks: First-principles study</title><source>AIP Journals Complete</source><creator>Hong, Wen-qing ; Ao, Zhi-Min ; Xu, Ying</creator><creatorcontrib>Hong, Wen-qing ; Ao, Zhi-Min ; Xu, Ying</creatorcontrib><description>Designing highly efficient single-atom catalysts for converting nitrogen into ammonia under ambient temperature conditions holds significant importance. Current research predominantly focuses on electrocatalytic nitrogen fixation, but compared to that, photocatalytic nitrogen fixation requires only sunlight as an energy source, making it more environmentally friendly and cost-effective. Developing efficient nitrogen reduction reaction (NRR) photocatalysts presents a promising yet highly challenging task. Two-dimensional (2D) covalent organic frameworks (COFs) have garnered interest because of their elevated surface area and regular pore structure. This study employs density functional theory calculations to investigate the potential of NRR photocatalysts using the 2D COF TMT-TFPT-COF (TT-COF) supported with 18 different transition metal atoms (TM = Rh, Nb, Os, Mo, Ru, Pt, Ni, Co, V, Cu, Fe, Re, W, Cr, Ta, Mn, Pd, Ti). Through a four-step selection process, the most promising photocatalyst is identified. The results indicate that a single Re atom loaded onto TT-COF (Re@TT-COF) displays the optimal nitrogen fixation performance, demonstrating excellent catalytic activity and selectivity with a limiting potential of only −0.30 V. Furthermore, its good light absorption efficiency, suitable band edge position, and significant photo-generated electron potential enable spontaneous nitrogen fixation. Our study provides useful guidance for the rational design of COF-based NRR photocatalysts with high activity, stability, and selectivity.</description><identifier>ISSN: 0003-6951</identifier><identifier>EISSN: 1077-3118</identifier><identifier>DOI: 10.1063/5.0223392</identifier><identifier>CODEN: APPLAB</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Ambient temperature ; Ammonia ; Catalytic activity ; Chemical reduction ; Density functional theory ; Electromagnetic absorption ; First principles ; Nitrogen ; Nitrogenation ; Palladium ; Photocatalysis ; Photocatalysts ; Rhenium ; Single atom catalysts ; Tantalum ; Transition metals</subject><ispartof>Applied physics letters, 2024-08, Vol.125 (9)</ispartof><rights>Author(s)</rights><rights>2024 Author(s). Published under an exclusive license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c182t-dc665774cfed096692d23ced483d2ffb19b6c53bfaf308ad49f8303e49ead3ff3</cites><orcidid>0009-0001-0029-6767 ; 0000-0002-6249-9383</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/apl/article-lookup/doi/10.1063/5.0223392$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>314,780,784,794,4512,27924,27925,76384</link.rule.ids></links><search><creatorcontrib>Hong, Wen-qing</creatorcontrib><creatorcontrib>Ao, Zhi-Min</creatorcontrib><creatorcontrib>Xu, Ying</creatorcontrib><title>Solar-driven photocatalytic nitrogen fixation on transition metal-doped covalent organic frameworks: First-principles study</title><title>Applied physics letters</title><description>Designing highly efficient single-atom catalysts for converting nitrogen into ammonia under ambient temperature conditions holds significant importance. Current research predominantly focuses on electrocatalytic nitrogen fixation, but compared to that, photocatalytic nitrogen fixation requires only sunlight as an energy source, making it more environmentally friendly and cost-effective. Developing efficient nitrogen reduction reaction (NRR) photocatalysts presents a promising yet highly challenging task. Two-dimensional (2D) covalent organic frameworks (COFs) have garnered interest because of their elevated surface area and regular pore structure. This study employs density functional theory calculations to investigate the potential of NRR photocatalysts using the 2D COF TMT-TFPT-COF (TT-COF) supported with 18 different transition metal atoms (TM = Rh, Nb, Os, Mo, Ru, Pt, Ni, Co, V, Cu, Fe, Re, W, Cr, Ta, Mn, Pd, Ti). Through a four-step selection process, the most promising photocatalyst is identified. The results indicate that a single Re atom loaded onto TT-COF (Re@TT-COF) displays the optimal nitrogen fixation performance, demonstrating excellent catalytic activity and selectivity with a limiting potential of only −0.30 V. Furthermore, its good light absorption efficiency, suitable band edge position, and significant photo-generated electron potential enable spontaneous nitrogen fixation. Our study provides useful guidance for the rational design of COF-based NRR photocatalysts with high activity, stability, and selectivity.</description><subject>Ambient temperature</subject><subject>Ammonia</subject><subject>Catalytic activity</subject><subject>Chemical reduction</subject><subject>Density functional theory</subject><subject>Electromagnetic absorption</subject><subject>First principles</subject><subject>Nitrogen</subject><subject>Nitrogenation</subject><subject>Palladium</subject><subject>Photocatalysis</subject><subject>Photocatalysts</subject><subject>Rhenium</subject><subject>Single atom catalysts</subject><subject>Tantalum</subject><subject>Transition metals</subject><issn>0003-6951</issn><issn>1077-3118</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kEtLAzEQgIMoWKsH_8GCJ4XUZGdf8SalVaHgQT0vaR41dZusSVot_nlj27MwMMzwzYMPoUtKRpRUcFuOSJ4DsPwIDSipawyUNsdoQAgBXLGSnqKzEJapLBM2QD8vruMeS282ymb9u4tO8Mi7bTQisyZ6t0h9bb55NM5mKaLnNphdtVKJxNL1SmbCbXinbMycX3CbhrXnK_Xl_Ee4y6bGh4h7b6wwfadCFuJabs_RieZdUBeHPERv08nr-BHPnh-exvczLGiTRyxFVZV1XQitJGFVxXKZg1CyaEDmWs8pm1eihLnmGkjDZcF0AwRUwRSXoDUM0dV-b-_d51qF2C7d2tt0sgXCagZJBkvU9Z4S3oXglW7Tvyvuty0l7Z_btmwPbhN7s2eDMHFn5h_4F36-fMo</recordid><startdate>20240826</startdate><enddate>20240826</enddate><creator>Hong, Wen-qing</creator><creator>Ao, Zhi-Min</creator><creator>Xu, Ying</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0009-0001-0029-6767</orcidid><orcidid>https://orcid.org/0000-0002-6249-9383</orcidid></search><sort><creationdate>20240826</creationdate><title>Solar-driven photocatalytic nitrogen fixation on transition metal-doped covalent organic frameworks: First-principles study</title><author>Hong, Wen-qing ; Ao, Zhi-Min ; Xu, Ying</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c182t-dc665774cfed096692d23ced483d2ffb19b6c53bfaf308ad49f8303e49ead3ff3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Ambient temperature</topic><topic>Ammonia</topic><topic>Catalytic activity</topic><topic>Chemical reduction</topic><topic>Density functional theory</topic><topic>Electromagnetic absorption</topic><topic>First principles</topic><topic>Nitrogen</topic><topic>Nitrogenation</topic><topic>Palladium</topic><topic>Photocatalysis</topic><topic>Photocatalysts</topic><topic>Rhenium</topic><topic>Single atom catalysts</topic><topic>Tantalum</topic><topic>Transition metals</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hong, Wen-qing</creatorcontrib><creatorcontrib>Ao, Zhi-Min</creatorcontrib><creatorcontrib>Xu, Ying</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Applied physics letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hong, Wen-qing</au><au>Ao, Zhi-Min</au><au>Xu, Ying</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Solar-driven photocatalytic nitrogen fixation on transition metal-doped covalent organic frameworks: First-principles study</atitle><jtitle>Applied physics letters</jtitle><date>2024-08-26</date><risdate>2024</risdate><volume>125</volume><issue>9</issue><issn>0003-6951</issn><eissn>1077-3118</eissn><coden>APPLAB</coden><abstract>Designing highly efficient single-atom catalysts for converting nitrogen into ammonia under ambient temperature conditions holds significant importance. Current research predominantly focuses on electrocatalytic nitrogen fixation, but compared to that, photocatalytic nitrogen fixation requires only sunlight as an energy source, making it more environmentally friendly and cost-effective. Developing efficient nitrogen reduction reaction (NRR) photocatalysts presents a promising yet highly challenging task. Two-dimensional (2D) covalent organic frameworks (COFs) have garnered interest because of their elevated surface area and regular pore structure. This study employs density functional theory calculations to investigate the potential of NRR photocatalysts using the 2D COF TMT-TFPT-COF (TT-COF) supported with 18 different transition metal atoms (TM = Rh, Nb, Os, Mo, Ru, Pt, Ni, Co, V, Cu, Fe, Re, W, Cr, Ta, Mn, Pd, Ti). Through a four-step selection process, the most promising photocatalyst is identified. The results indicate that a single Re atom loaded onto TT-COF (Re@TT-COF) displays the optimal nitrogen fixation performance, demonstrating excellent catalytic activity and selectivity with a limiting potential of only −0.30 V. Furthermore, its good light absorption efficiency, suitable band edge position, and significant photo-generated electron potential enable spontaneous nitrogen fixation. Our study provides useful guidance for the rational design of COF-based NRR photocatalysts with high activity, stability, and selectivity.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0223392</doi><tpages>10</tpages><orcidid>https://orcid.org/0009-0001-0029-6767</orcidid><orcidid>https://orcid.org/0000-0002-6249-9383</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0003-6951
ispartof Applied physics letters, 2024-08, Vol.125 (9)
issn 0003-6951
1077-3118
language eng
recordid cdi_proquest_journals_3097930059
source AIP Journals Complete
subjects Ambient temperature
Ammonia
Catalytic activity
Chemical reduction
Density functional theory
Electromagnetic absorption
First principles
Nitrogen
Nitrogenation
Palladium
Photocatalysis
Photocatalysts
Rhenium
Single atom catalysts
Tantalum
Transition metals
title Solar-driven photocatalytic nitrogen fixation on transition metal-doped covalent organic frameworks: First-principles study
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T08%3A01%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Solar-driven%20photocatalytic%20nitrogen%20fixation%20on%20transition%20metal-doped%20covalent%20organic%20frameworks:%20First-principles%20study&rft.jtitle=Applied%20physics%20letters&rft.au=Hong,%20Wen-qing&rft.date=2024-08-26&rft.volume=125&rft.issue=9&rft.issn=0003-6951&rft.eissn=1077-3118&rft.coden=APPLAB&rft_id=info:doi/10.1063/5.0223392&rft_dat=%3Cproquest_scita%3E3097930059%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3097930059&rft_id=info:pmid/&rfr_iscdi=true