Optimizing Pilotage Efficiency with Autonomous Surface Vehicle Assistance
Efficient pilotage planning is essential, particularly due to the increasing demand for skilled pilots amid frequent vessel traffic. Addressing pilot shortages and ensuring navigational safety, this study presents an innovative pilot-ASV scheduling strategy. This approach utilizes autonomous surface...
Gespeichert in:
Veröffentlicht in: | Electronics (Basel) 2024-08, Vol.13 (16), p.3152 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 16 |
container_start_page | 3152 |
container_title | Electronics (Basel) |
container_volume | 13 |
creator | Chu, Yiyao Zheng, Qinggong |
description | Efficient pilotage planning is essential, particularly due to the increasing demand for skilled pilots amid frequent vessel traffic. Addressing pilot shortages and ensuring navigational safety, this study presents an innovative pilot-ASV scheduling strategy. This approach utilizes autonomous surface vehicles (ASVs) to assist or replace junior pilots in specific tasks, thereby alleviating pilot resource constraints and upholding safety standards. We develop a comprehensive mathematical model that accommodates pilot work time windows, various pilot levels, and ASV battery limitations. An improved artificial bee colony algorithm is proposed to solve this model effectively, integrating breadth-first and depth-first search strategies to enhance solution quality and efficiency uniquely. Extensive numerical experiments corroborate the model’s effectiveness, showing that our integrated optimization approach decreases vessel waiting times by an average of 9.18% compared to traditional methods without ASV integration. The findings underscore the potential of pilot-ASV scheduling to significantly improve both the efficiency and safety of vessel pilotages. |
doi_str_mv | 10.3390/electronics13163152 |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_3097929336</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A807417094</galeid><sourcerecordid>A807417094</sourcerecordid><originalsourceid>FETCH-LOGICAL-c196t-b3d1ca292e779ec8312b48156778bc1e19f7948e5ba6c28c3b3dc439397e0c4d3</originalsourceid><addsrcrecordid>eNptUE1rwzAMNWODla6_YJfAzunsKI3jYyjdVih0sI9rcFSldUnjznYY3a-fR3fYYdJBQrz3JD3GbgWfAih-Tx1hcLY36AWIAsQsu2CjjEuVqkxll3_6azbxfs9jKAEl8BFbro_BHMyX6bfJs-ls0FtKFm1r0FCPp-TThF1SDcH29mAHn7wMrtVIyTvtDHaUVN4bH3SPdMOuWt15mvzWMXt7WLzOn9LV-nE5r1YpClWEtIGNQB1vISkVYQkia_JSzAopywYFCdVKlZc0a3SBWYkQCZiDAiWJY76BMbs76x6d_RjIh3pvB9fHlTVwJeObAEVETc-ore6oNn1rg9MYc0MHg7an1sR5VXKZC8lVHglwJqCz3jtq66MzB-1OteD1j8_1Pz7DNxSNc4A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3097929336</pqid></control><display><type>article</type><title>Optimizing Pilotage Efficiency with Autonomous Surface Vehicle Assistance</title><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Chu, Yiyao ; Zheng, Qinggong</creator><creatorcontrib>Chu, Yiyao ; Zheng, Qinggong</creatorcontrib><description>Efficient pilotage planning is essential, particularly due to the increasing demand for skilled pilots amid frequent vessel traffic. Addressing pilot shortages and ensuring navigational safety, this study presents an innovative pilot-ASV scheduling strategy. This approach utilizes autonomous surface vehicles (ASVs) to assist or replace junior pilots in specific tasks, thereby alleviating pilot resource constraints and upholding safety standards. We develop a comprehensive mathematical model that accommodates pilot work time windows, various pilot levels, and ASV battery limitations. An improved artificial bee colony algorithm is proposed to solve this model effectively, integrating breadth-first and depth-first search strategies to enhance solution quality and efficiency uniquely. Extensive numerical experiments corroborate the model’s effectiveness, showing that our integrated optimization approach decreases vessel waiting times by an average of 9.18% compared to traditional methods without ASV integration. The findings underscore the potential of pilot-ASV scheduling to significantly improve both the efficiency and safety of vessel pilotages.</description><identifier>ISSN: 2079-9292</identifier><identifier>EISSN: 2079-9292</identifier><identifier>DOI: 10.3390/electronics13163152</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Accident prevention ; Algorithms ; Autonomous navigation ; Batteries ; Efficiency ; Integer programming ; Linear programming ; Mathematical models ; Optimization ; Pilotage ; Pilots ; Pilots and pilotage ; Planning ; Ports ; Schedules ; Scheduling ; Search algorithms ; Surface vehicles ; Swarm intelligence ; Task scheduling ; Traffic congestion ; Traffic planning ; Vessels ; Working hours</subject><ispartof>Electronics (Basel), 2024-08, Vol.13 (16), p.3152</ispartof><rights>COPYRIGHT 2024 MDPI AG</rights><rights>2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c196t-b3d1ca292e779ec8312b48156778bc1e19f7948e5ba6c28c3b3dc439397e0c4d3</cites><orcidid>0000-0001-8672-6678</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids></links><search><creatorcontrib>Chu, Yiyao</creatorcontrib><creatorcontrib>Zheng, Qinggong</creatorcontrib><title>Optimizing Pilotage Efficiency with Autonomous Surface Vehicle Assistance</title><title>Electronics (Basel)</title><description>Efficient pilotage planning is essential, particularly due to the increasing demand for skilled pilots amid frequent vessel traffic. Addressing pilot shortages and ensuring navigational safety, this study presents an innovative pilot-ASV scheduling strategy. This approach utilizes autonomous surface vehicles (ASVs) to assist or replace junior pilots in specific tasks, thereby alleviating pilot resource constraints and upholding safety standards. We develop a comprehensive mathematical model that accommodates pilot work time windows, various pilot levels, and ASV battery limitations. An improved artificial bee colony algorithm is proposed to solve this model effectively, integrating breadth-first and depth-first search strategies to enhance solution quality and efficiency uniquely. Extensive numerical experiments corroborate the model’s effectiveness, showing that our integrated optimization approach decreases vessel waiting times by an average of 9.18% compared to traditional methods without ASV integration. The findings underscore the potential of pilot-ASV scheduling to significantly improve both the efficiency and safety of vessel pilotages.</description><subject>Accident prevention</subject><subject>Algorithms</subject><subject>Autonomous navigation</subject><subject>Batteries</subject><subject>Efficiency</subject><subject>Integer programming</subject><subject>Linear programming</subject><subject>Mathematical models</subject><subject>Optimization</subject><subject>Pilotage</subject><subject>Pilots</subject><subject>Pilots and pilotage</subject><subject>Planning</subject><subject>Ports</subject><subject>Schedules</subject><subject>Scheduling</subject><subject>Search algorithms</subject><subject>Surface vehicles</subject><subject>Swarm intelligence</subject><subject>Task scheduling</subject><subject>Traffic congestion</subject><subject>Traffic planning</subject><subject>Vessels</subject><subject>Working hours</subject><issn>2079-9292</issn><issn>2079-9292</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNptUE1rwzAMNWODla6_YJfAzunsKI3jYyjdVih0sI9rcFSldUnjznYY3a-fR3fYYdJBQrz3JD3GbgWfAih-Tx1hcLY36AWIAsQsu2CjjEuVqkxll3_6azbxfs9jKAEl8BFbro_BHMyX6bfJs-ls0FtKFm1r0FCPp-TThF1SDcH29mAHn7wMrtVIyTvtDHaUVN4bH3SPdMOuWt15mvzWMXt7WLzOn9LV-nE5r1YpClWEtIGNQB1vISkVYQkia_JSzAopywYFCdVKlZc0a3SBWYkQCZiDAiWJY76BMbs76x6d_RjIh3pvB9fHlTVwJeObAEVETc-ore6oNn1rg9MYc0MHg7an1sR5VXKZC8lVHglwJqCz3jtq66MzB-1OteD1j8_1Pz7DNxSNc4A</recordid><startdate>20240801</startdate><enddate>20240801</enddate><creator>Chu, Yiyao</creator><creator>Zheng, Qinggong</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L7M</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><orcidid>https://orcid.org/0000-0001-8672-6678</orcidid></search><sort><creationdate>20240801</creationdate><title>Optimizing Pilotage Efficiency with Autonomous Surface Vehicle Assistance</title><author>Chu, Yiyao ; Zheng, Qinggong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c196t-b3d1ca292e779ec8312b48156778bc1e19f7948e5ba6c28c3b3dc439397e0c4d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Accident prevention</topic><topic>Algorithms</topic><topic>Autonomous navigation</topic><topic>Batteries</topic><topic>Efficiency</topic><topic>Integer programming</topic><topic>Linear programming</topic><topic>Mathematical models</topic><topic>Optimization</topic><topic>Pilotage</topic><topic>Pilots</topic><topic>Pilots and pilotage</topic><topic>Planning</topic><topic>Ports</topic><topic>Schedules</topic><topic>Scheduling</topic><topic>Search algorithms</topic><topic>Surface vehicles</topic><topic>Swarm intelligence</topic><topic>Task scheduling</topic><topic>Traffic congestion</topic><topic>Traffic planning</topic><topic>Vessels</topic><topic>Working hours</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chu, Yiyao</creatorcontrib><creatorcontrib>Zheng, Qinggong</creatorcontrib><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Electronics (Basel)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chu, Yiyao</au><au>Zheng, Qinggong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optimizing Pilotage Efficiency with Autonomous Surface Vehicle Assistance</atitle><jtitle>Electronics (Basel)</jtitle><date>2024-08-01</date><risdate>2024</risdate><volume>13</volume><issue>16</issue><spage>3152</spage><pages>3152-</pages><issn>2079-9292</issn><eissn>2079-9292</eissn><abstract>Efficient pilotage planning is essential, particularly due to the increasing demand for skilled pilots amid frequent vessel traffic. Addressing pilot shortages and ensuring navigational safety, this study presents an innovative pilot-ASV scheduling strategy. This approach utilizes autonomous surface vehicles (ASVs) to assist or replace junior pilots in specific tasks, thereby alleviating pilot resource constraints and upholding safety standards. We develop a comprehensive mathematical model that accommodates pilot work time windows, various pilot levels, and ASV battery limitations. An improved artificial bee colony algorithm is proposed to solve this model effectively, integrating breadth-first and depth-first search strategies to enhance solution quality and efficiency uniquely. Extensive numerical experiments corroborate the model’s effectiveness, showing that our integrated optimization approach decreases vessel waiting times by an average of 9.18% compared to traditional methods without ASV integration. The findings underscore the potential of pilot-ASV scheduling to significantly improve both the efficiency and safety of vessel pilotages.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/electronics13163152</doi><orcidid>https://orcid.org/0000-0001-8672-6678</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2079-9292 |
ispartof | Electronics (Basel), 2024-08, Vol.13 (16), p.3152 |
issn | 2079-9292 2079-9292 |
language | eng |
recordid | cdi_proquest_journals_3097929336 |
source | MDPI - Multidisciplinary Digital Publishing Institute; EZB-FREE-00999 freely available EZB journals |
subjects | Accident prevention Algorithms Autonomous navigation Batteries Efficiency Integer programming Linear programming Mathematical models Optimization Pilotage Pilots Pilots and pilotage Planning Ports Schedules Scheduling Search algorithms Surface vehicles Swarm intelligence Task scheduling Traffic congestion Traffic planning Vessels Working hours |
title | Optimizing Pilotage Efficiency with Autonomous Surface Vehicle Assistance |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T08%3A26%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optimizing%20Pilotage%20Efficiency%20with%20Autonomous%20Surface%20Vehicle%20Assistance&rft.jtitle=Electronics%20(Basel)&rft.au=Chu,%20Yiyao&rft.date=2024-08-01&rft.volume=13&rft.issue=16&rft.spage=3152&rft.pages=3152-&rft.issn=2079-9292&rft.eissn=2079-9292&rft_id=info:doi/10.3390/electronics13163152&rft_dat=%3Cgale_proqu%3EA807417094%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3097929336&rft_id=info:pmid/&rft_galeid=A807417094&rfr_iscdi=true |