Incremental Versus Differential Approaches to Exponential Stability and Passivity

There are two main Lyapunov approaches to incremental stability analysis. One is to use incremental Lyapunov functions directly, and the other is based on so-called Finsler-Lyapunov functions via contraction analysis. A system is incrementally exponentially stable if it admits either an incremental...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on automatic control 2024-09, Vol.69 (9), p.6450-6457
Hauptverfasser: Kawano, Yu, Besselink, Bart
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 6457
container_issue 9
container_start_page 6450
container_title IEEE transactions on automatic control
container_volume 69
creator Kawano, Yu
Besselink, Bart
description There are two main Lyapunov approaches to incremental stability analysis. One is to use incremental Lyapunov functions directly, and the other is based on so-called Finsler-Lyapunov functions via contraction analysis. A system is incrementally exponentially stable if it admits either an incremental or Finsler-Lyapunov function, and the converse is also true when the Jacobian of the drift vector field satisfies a boundedness assumption. However, the direct relation between these Lyapunov functions is not very clear yet. In this article, we show that if one type of Lyapunov function is found, the other can directly be constructed from it without the boundedness assumption. As an application of our approach, we also show that an open system is incrementally passive if and only if it is differentially passive under a mild technical assumption.
doi_str_mv 10.1109/TAC.2024.3385036
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_3097922568</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10491313</ieee_id><sourcerecordid>3097922568</sourcerecordid><originalsourceid>FETCH-LOGICAL-c245t-35e0006f9934db2606e4ea024ee1385134f99751d4be5586c2b5e21247d7080f3</originalsourceid><addsrcrecordid>eNpNUE1Lw0AUXETBWr178BDwnPj2M9ljqa0WCipWr8smecEtbRJ3U7H_3i3twdNj3sz7mCHklkJGKeiH1WSaMWAi47yQwNUZGVEpi5RJxs_JCIAWqWaFuiRXIawjVELQEXlbtJXHLbaD3SSf6MMuJI-uadDHlou9Sd_7zlZfGJKhS2a_fdeemPfBlm7jhn1i2zp5tSG4n4iuyUVjNwFvTnVMPuaz1fQ5Xb48LaaTZVoxIYeUSwQA1WjNRV0yBQoF2mgAkUYHlItI5ZLWosToQ1WslMgoE3mdQwENH5P749743_cOw2DW3c638aThoHPNmFRFVMFRVfkuBI-N6b3bWr83FMwhOBODM4fgzCm4OHJ3HHGI-E8uNOWU8z8c1GjP</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3097922568</pqid></control><display><type>article</type><title>Incremental Versus Differential Approaches to Exponential Stability and Passivity</title><source>IEEE Electronic Library (IEL)</source><creator>Kawano, Yu ; Besselink, Bart</creator><creatorcontrib>Kawano, Yu ; Besselink, Bart</creatorcontrib><description>There are two main Lyapunov approaches to incremental stability analysis. One is to use incremental Lyapunov functions directly, and the other is based on so-called Finsler-Lyapunov functions via contraction analysis. A system is incrementally exponentially stable if it admits either an incremental or Finsler-Lyapunov function, and the converse is also true when the Jacobian of the drift vector field satisfies a boundedness assumption. However, the direct relation between these Lyapunov functions is not very clear yet. In this article, we show that if one type of Lyapunov function is found, the other can directly be constructed from it without the boundedness assumption. As an application of our approach, we also show that an open system is incrementally passive if and only if it is differentially passive under a mild technical assumption.</description><identifier>ISSN: 0018-9286</identifier><identifier>EISSN: 1558-2523</identifier><identifier>DOI: 10.1109/TAC.2024.3385036</identifier><identifier>CODEN: IETAA9</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Asymptotic stability ; Contraction ; Control theory ; Fields (mathematics) ; incremental stability ; Jacobian matrices ; Liapunov functions ; Lyapunov functions ; Lyapunov methods ; nonlinear systems ; Open systems ; passivity ; Stability analysis ; Stability criteria ; Trajectory ; Vectors</subject><ispartof>IEEE transactions on automatic control, 2024-09, Vol.69 (9), p.6450-6457</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c245t-35e0006f9934db2606e4ea024ee1385134f99751d4be5586c2b5e21247d7080f3</cites><orcidid>0000-0001-5194-3306 ; 0000-0001-5066-4700</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10491313$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10491313$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Kawano, Yu</creatorcontrib><creatorcontrib>Besselink, Bart</creatorcontrib><title>Incremental Versus Differential Approaches to Exponential Stability and Passivity</title><title>IEEE transactions on automatic control</title><addtitle>TAC</addtitle><description>There are two main Lyapunov approaches to incremental stability analysis. One is to use incremental Lyapunov functions directly, and the other is based on so-called Finsler-Lyapunov functions via contraction analysis. A system is incrementally exponentially stable if it admits either an incremental or Finsler-Lyapunov function, and the converse is also true when the Jacobian of the drift vector field satisfies a boundedness assumption. However, the direct relation between these Lyapunov functions is not very clear yet. In this article, we show that if one type of Lyapunov function is found, the other can directly be constructed from it without the boundedness assumption. As an application of our approach, we also show that an open system is incrementally passive if and only if it is differentially passive under a mild technical assumption.</description><subject>Asymptotic stability</subject><subject>Contraction</subject><subject>Control theory</subject><subject>Fields (mathematics)</subject><subject>incremental stability</subject><subject>Jacobian matrices</subject><subject>Liapunov functions</subject><subject>Lyapunov functions</subject><subject>Lyapunov methods</subject><subject>nonlinear systems</subject><subject>Open systems</subject><subject>passivity</subject><subject>Stability analysis</subject><subject>Stability criteria</subject><subject>Trajectory</subject><subject>Vectors</subject><issn>0018-9286</issn><issn>1558-2523</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNUE1Lw0AUXETBWr178BDwnPj2M9ljqa0WCipWr8smecEtbRJ3U7H_3i3twdNj3sz7mCHklkJGKeiH1WSaMWAi47yQwNUZGVEpi5RJxs_JCIAWqWaFuiRXIawjVELQEXlbtJXHLbaD3SSf6MMuJI-uadDHlou9Sd_7zlZfGJKhS2a_fdeemPfBlm7jhn1i2zp5tSG4n4iuyUVjNwFvTnVMPuaz1fQ5Xb48LaaTZVoxIYeUSwQA1WjNRV0yBQoF2mgAkUYHlItI5ZLWosToQ1WslMgoE3mdQwENH5P749743_cOw2DW3c638aThoHPNmFRFVMFRVfkuBI-N6b3bWr83FMwhOBODM4fgzCm4OHJ3HHGI-E8uNOWU8z8c1GjP</recordid><startdate>20240901</startdate><enddate>20240901</enddate><creator>Kawano, Yu</creator><creator>Besselink, Bart</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0001-5194-3306</orcidid><orcidid>https://orcid.org/0000-0001-5066-4700</orcidid></search><sort><creationdate>20240901</creationdate><title>Incremental Versus Differential Approaches to Exponential Stability and Passivity</title><author>Kawano, Yu ; Besselink, Bart</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c245t-35e0006f9934db2606e4ea024ee1385134f99751d4be5586c2b5e21247d7080f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Asymptotic stability</topic><topic>Contraction</topic><topic>Control theory</topic><topic>Fields (mathematics)</topic><topic>incremental stability</topic><topic>Jacobian matrices</topic><topic>Liapunov functions</topic><topic>Lyapunov functions</topic><topic>Lyapunov methods</topic><topic>nonlinear systems</topic><topic>Open systems</topic><topic>passivity</topic><topic>Stability analysis</topic><topic>Stability criteria</topic><topic>Trajectory</topic><topic>Vectors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kawano, Yu</creatorcontrib><creatorcontrib>Besselink, Bart</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on automatic control</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Kawano, Yu</au><au>Besselink, Bart</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Incremental Versus Differential Approaches to Exponential Stability and Passivity</atitle><jtitle>IEEE transactions on automatic control</jtitle><stitle>TAC</stitle><date>2024-09-01</date><risdate>2024</risdate><volume>69</volume><issue>9</issue><spage>6450</spage><epage>6457</epage><pages>6450-6457</pages><issn>0018-9286</issn><eissn>1558-2523</eissn><coden>IETAA9</coden><abstract>There are two main Lyapunov approaches to incremental stability analysis. One is to use incremental Lyapunov functions directly, and the other is based on so-called Finsler-Lyapunov functions via contraction analysis. A system is incrementally exponentially stable if it admits either an incremental or Finsler-Lyapunov function, and the converse is also true when the Jacobian of the drift vector field satisfies a boundedness assumption. However, the direct relation between these Lyapunov functions is not very clear yet. In this article, we show that if one type of Lyapunov function is found, the other can directly be constructed from it without the boundedness assumption. As an application of our approach, we also show that an open system is incrementally passive if and only if it is differentially passive under a mild technical assumption.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TAC.2024.3385036</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0001-5194-3306</orcidid><orcidid>https://orcid.org/0000-0001-5066-4700</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0018-9286
ispartof IEEE transactions on automatic control, 2024-09, Vol.69 (9), p.6450-6457
issn 0018-9286
1558-2523
language eng
recordid cdi_proquest_journals_3097922568
source IEEE Electronic Library (IEL)
subjects Asymptotic stability
Contraction
Control theory
Fields (mathematics)
incremental stability
Jacobian matrices
Liapunov functions
Lyapunov functions
Lyapunov methods
nonlinear systems
Open systems
passivity
Stability analysis
Stability criteria
Trajectory
Vectors
title Incremental Versus Differential Approaches to Exponential Stability and Passivity
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T20%3A12%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Incremental%20Versus%20Differential%20Approaches%20to%20Exponential%20Stability%20and%20Passivity&rft.jtitle=IEEE%20transactions%20on%20automatic%20control&rft.au=Kawano,%20Yu&rft.date=2024-09-01&rft.volume=69&rft.issue=9&rft.spage=6450&rft.epage=6457&rft.pages=6450-6457&rft.issn=0018-9286&rft.eissn=1558-2523&rft.coden=IETAA9&rft_id=info:doi/10.1109/TAC.2024.3385036&rft_dat=%3Cproquest_RIE%3E3097922568%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3097922568&rft_id=info:pmid/&rft_ieee_id=10491313&rfr_iscdi=true