Incremental Versus Differential Approaches to Exponential Stability and Passivity
There are two main Lyapunov approaches to incremental stability analysis. One is to use incremental Lyapunov functions directly, and the other is based on so-called Finsler-Lyapunov functions via contraction analysis. A system is incrementally exponentially stable if it admits either an incremental...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on automatic control 2024-09, Vol.69 (9), p.6450-6457 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 6457 |
---|---|
container_issue | 9 |
container_start_page | 6450 |
container_title | IEEE transactions on automatic control |
container_volume | 69 |
creator | Kawano, Yu Besselink, Bart |
description | There are two main Lyapunov approaches to incremental stability analysis. One is to use incremental Lyapunov functions directly, and the other is based on so-called Finsler-Lyapunov functions via contraction analysis. A system is incrementally exponentially stable if it admits either an incremental or Finsler-Lyapunov function, and the converse is also true when the Jacobian of the drift vector field satisfies a boundedness assumption. However, the direct relation between these Lyapunov functions is not very clear yet. In this article, we show that if one type of Lyapunov function is found, the other can directly be constructed from it without the boundedness assumption. As an application of our approach, we also show that an open system is incrementally passive if and only if it is differentially passive under a mild technical assumption. |
doi_str_mv | 10.1109/TAC.2024.3385036 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_3097922568</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10491313</ieee_id><sourcerecordid>3097922568</sourcerecordid><originalsourceid>FETCH-LOGICAL-c245t-35e0006f9934db2606e4ea024ee1385134f99751d4be5586c2b5e21247d7080f3</originalsourceid><addsrcrecordid>eNpNUE1Lw0AUXETBWr178BDwnPj2M9ljqa0WCipWr8smecEtbRJ3U7H_3i3twdNj3sz7mCHklkJGKeiH1WSaMWAi47yQwNUZGVEpi5RJxs_JCIAWqWaFuiRXIawjVELQEXlbtJXHLbaD3SSf6MMuJI-uadDHlou9Sd_7zlZfGJKhS2a_fdeemPfBlm7jhn1i2zp5tSG4n4iuyUVjNwFvTnVMPuaz1fQ5Xb48LaaTZVoxIYeUSwQA1WjNRV0yBQoF2mgAkUYHlItI5ZLWosToQ1WslMgoE3mdQwENH5P749743_cOw2DW3c638aThoHPNmFRFVMFRVfkuBI-N6b3bWr83FMwhOBODM4fgzCm4OHJ3HHGI-E8uNOWU8z8c1GjP</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3097922568</pqid></control><display><type>article</type><title>Incremental Versus Differential Approaches to Exponential Stability and Passivity</title><source>IEEE Electronic Library (IEL)</source><creator>Kawano, Yu ; Besselink, Bart</creator><creatorcontrib>Kawano, Yu ; Besselink, Bart</creatorcontrib><description>There are two main Lyapunov approaches to incremental stability analysis. One is to use incremental Lyapunov functions directly, and the other is based on so-called Finsler-Lyapunov functions via contraction analysis. A system is incrementally exponentially stable if it admits either an incremental or Finsler-Lyapunov function, and the converse is also true when the Jacobian of the drift vector field satisfies a boundedness assumption. However, the direct relation between these Lyapunov functions is not very clear yet. In this article, we show that if one type of Lyapunov function is found, the other can directly be constructed from it without the boundedness assumption. As an application of our approach, we also show that an open system is incrementally passive if and only if it is differentially passive under a mild technical assumption.</description><identifier>ISSN: 0018-9286</identifier><identifier>EISSN: 1558-2523</identifier><identifier>DOI: 10.1109/TAC.2024.3385036</identifier><identifier>CODEN: IETAA9</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Asymptotic stability ; Contraction ; Control theory ; Fields (mathematics) ; incremental stability ; Jacobian matrices ; Liapunov functions ; Lyapunov functions ; Lyapunov methods ; nonlinear systems ; Open systems ; passivity ; Stability analysis ; Stability criteria ; Trajectory ; Vectors</subject><ispartof>IEEE transactions on automatic control, 2024-09, Vol.69 (9), p.6450-6457</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c245t-35e0006f9934db2606e4ea024ee1385134f99751d4be5586c2b5e21247d7080f3</cites><orcidid>0000-0001-5194-3306 ; 0000-0001-5066-4700</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10491313$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10491313$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Kawano, Yu</creatorcontrib><creatorcontrib>Besselink, Bart</creatorcontrib><title>Incremental Versus Differential Approaches to Exponential Stability and Passivity</title><title>IEEE transactions on automatic control</title><addtitle>TAC</addtitle><description>There are two main Lyapunov approaches to incremental stability analysis. One is to use incremental Lyapunov functions directly, and the other is based on so-called Finsler-Lyapunov functions via contraction analysis. A system is incrementally exponentially stable if it admits either an incremental or Finsler-Lyapunov function, and the converse is also true when the Jacobian of the drift vector field satisfies a boundedness assumption. However, the direct relation between these Lyapunov functions is not very clear yet. In this article, we show that if one type of Lyapunov function is found, the other can directly be constructed from it without the boundedness assumption. As an application of our approach, we also show that an open system is incrementally passive if and only if it is differentially passive under a mild technical assumption.</description><subject>Asymptotic stability</subject><subject>Contraction</subject><subject>Control theory</subject><subject>Fields (mathematics)</subject><subject>incremental stability</subject><subject>Jacobian matrices</subject><subject>Liapunov functions</subject><subject>Lyapunov functions</subject><subject>Lyapunov methods</subject><subject>nonlinear systems</subject><subject>Open systems</subject><subject>passivity</subject><subject>Stability analysis</subject><subject>Stability criteria</subject><subject>Trajectory</subject><subject>Vectors</subject><issn>0018-9286</issn><issn>1558-2523</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNUE1Lw0AUXETBWr178BDwnPj2M9ljqa0WCipWr8smecEtbRJ3U7H_3i3twdNj3sz7mCHklkJGKeiH1WSaMWAi47yQwNUZGVEpi5RJxs_JCIAWqWaFuiRXIawjVELQEXlbtJXHLbaD3SSf6MMuJI-uadDHlou9Sd_7zlZfGJKhS2a_fdeemPfBlm7jhn1i2zp5tSG4n4iuyUVjNwFvTnVMPuaz1fQ5Xb48LaaTZVoxIYeUSwQA1WjNRV0yBQoF2mgAkUYHlItI5ZLWosToQ1WslMgoE3mdQwENH5P749743_cOw2DW3c638aThoHPNmFRFVMFRVfkuBI-N6b3bWr83FMwhOBODM4fgzCm4OHJ3HHGI-E8uNOWU8z8c1GjP</recordid><startdate>20240901</startdate><enddate>20240901</enddate><creator>Kawano, Yu</creator><creator>Besselink, Bart</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0001-5194-3306</orcidid><orcidid>https://orcid.org/0000-0001-5066-4700</orcidid></search><sort><creationdate>20240901</creationdate><title>Incremental Versus Differential Approaches to Exponential Stability and Passivity</title><author>Kawano, Yu ; Besselink, Bart</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c245t-35e0006f9934db2606e4ea024ee1385134f99751d4be5586c2b5e21247d7080f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Asymptotic stability</topic><topic>Contraction</topic><topic>Control theory</topic><topic>Fields (mathematics)</topic><topic>incremental stability</topic><topic>Jacobian matrices</topic><topic>Liapunov functions</topic><topic>Lyapunov functions</topic><topic>Lyapunov methods</topic><topic>nonlinear systems</topic><topic>Open systems</topic><topic>passivity</topic><topic>Stability analysis</topic><topic>Stability criteria</topic><topic>Trajectory</topic><topic>Vectors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kawano, Yu</creatorcontrib><creatorcontrib>Besselink, Bart</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on automatic control</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Kawano, Yu</au><au>Besselink, Bart</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Incremental Versus Differential Approaches to Exponential Stability and Passivity</atitle><jtitle>IEEE transactions on automatic control</jtitle><stitle>TAC</stitle><date>2024-09-01</date><risdate>2024</risdate><volume>69</volume><issue>9</issue><spage>6450</spage><epage>6457</epage><pages>6450-6457</pages><issn>0018-9286</issn><eissn>1558-2523</eissn><coden>IETAA9</coden><abstract>There are two main Lyapunov approaches to incremental stability analysis. One is to use incremental Lyapunov functions directly, and the other is based on so-called Finsler-Lyapunov functions via contraction analysis. A system is incrementally exponentially stable if it admits either an incremental or Finsler-Lyapunov function, and the converse is also true when the Jacobian of the drift vector field satisfies a boundedness assumption. However, the direct relation between these Lyapunov functions is not very clear yet. In this article, we show that if one type of Lyapunov function is found, the other can directly be constructed from it without the boundedness assumption. As an application of our approach, we also show that an open system is incrementally passive if and only if it is differentially passive under a mild technical assumption.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TAC.2024.3385036</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0001-5194-3306</orcidid><orcidid>https://orcid.org/0000-0001-5066-4700</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0018-9286 |
ispartof | IEEE transactions on automatic control, 2024-09, Vol.69 (9), p.6450-6457 |
issn | 0018-9286 1558-2523 |
language | eng |
recordid | cdi_proquest_journals_3097922568 |
source | IEEE Electronic Library (IEL) |
subjects | Asymptotic stability Contraction Control theory Fields (mathematics) incremental stability Jacobian matrices Liapunov functions Lyapunov functions Lyapunov methods nonlinear systems Open systems passivity Stability analysis Stability criteria Trajectory Vectors |
title | Incremental Versus Differential Approaches to Exponential Stability and Passivity |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T20%3A12%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Incremental%20Versus%20Differential%20Approaches%20to%20Exponential%20Stability%20and%20Passivity&rft.jtitle=IEEE%20transactions%20on%20automatic%20control&rft.au=Kawano,%20Yu&rft.date=2024-09-01&rft.volume=69&rft.issue=9&rft.spage=6450&rft.epage=6457&rft.pages=6450-6457&rft.issn=0018-9286&rft.eissn=1558-2523&rft.coden=IETAA9&rft_id=info:doi/10.1109/TAC.2024.3385036&rft_dat=%3Cproquest_RIE%3E3097922568%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3097922568&rft_id=info:pmid/&rft_ieee_id=10491313&rfr_iscdi=true |