Undirected Weighted Network Topologies With Best Possible Pinning Controllability
Controllability of complex networks through pinning control toward a desired trajectory is crucial for ensuring synchronization stability. Concerned with the local stability of the network's synchronization, here, the controllability problem is addressed different from the literature by incorpo...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on automatic control 2024-09, Vol.69 (9), p.6285-6292 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 6292 |
---|---|
container_issue | 9 |
container_start_page | 6285 |
container_title | IEEE transactions on automatic control |
container_volume | 69 |
creator | Jafarizadeh, Saber |
description | Controllability of complex networks through pinning control toward a desired trajectory is crucial for ensuring synchronization stability. Concerned with the local stability of the network's synchronization, here, the controllability problem is addressed different from the literature by incorporating weighted Laplacian and nonuniform feedback gain. This approach has led to a spectral radius minimization problem, where using its semidefinite programming (SDP) formulation leads to a unique optimal point, with uniform feedback gain, on the Pareto frontier. Using this approach, this article has systematically characterized the networks that can achieve the best possible optimal controllability measure. For such networks, it is shown that (i) network's optimal controllability measure is expressed in terms of the number of pinned and free nodes, (ii) the optimal feedback gains of pinned nodes are uniform, (iii) sum of optimal weight linked to a node is determined in terms of its type and the optimal spectral radius of network, (iv) nodes of same type have the same value for the optimal dual SDP variables. |
doi_str_mv | 10.1109/TAC.2024.3376302 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_3097922555</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10468620</ieee_id><sourcerecordid>3097922555</sourcerecordid><originalsourceid>FETCH-LOGICAL-c245t-ee1cb179f3e0d0551cb3f78617098767d6e8e04ea89cda25abe95dcca25b637d3</originalsourceid><addsrcrecordid>eNpNkEtLw0AUhQdRsFb3LlwEXCfOI_Na1uALilZo6XLI46adGjN1JkX6753SLlzdc-Gcew8fQrcEZ4Rg_TCfFBnFNM8Yk4JheoZGhHOVUk7ZORphTFSqqRKX6CqETVxFnpMR-lz0jfVQD9AkS7Cr9UG8w_Dr_Fcyd1vXuZWFkCztsE4eIQzJzIVgqw6Sme1726-SwvWDd11XVrazw_4aXbRlF-DmNMdo8fw0L17T6cfLWzGZpjXN-ZACkLoiUrcMcIM5jxtrpRJEYq2kkI0ABTiHUum6KSkvK9C8qesoK8Fkw8bo_nh3693PLjYzG7fzfXxpGNZSU8o5jy58dNU-9vbQmq2336XfG4LNAZyJ4MwBnDmBi5G7Y8QCwD97LpSgmP0B52xqWw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3097922555</pqid></control><display><type>article</type><title>Undirected Weighted Network Topologies With Best Possible Pinning Controllability</title><source>IEEE Electronic Library (IEL)</source><creator>Jafarizadeh, Saber</creator><creatorcontrib>Jafarizadeh, Saber</creatorcontrib><description><![CDATA[Controllability of complex networks through pinning control toward a desired trajectory is crucial for ensuring synchronization stability. Concerned with the local stability of the network's synchronization, here, the controllability problem is addressed different from the literature by incorporating weighted Laplacian and nonuniform feedback gain. This approach has led to a spectral radius minimization problem, where using its semidefinite programming (SDP) formulation leads to a unique optimal point, with uniform feedback gain, on the Pareto frontier. Using this approach, this article has systematically characterized the networks that can achieve the best possible optimal controllability measure. For such networks, it is shown that <inline-formula><tex-math notation="LaTeX">(i)</tex-math></inline-formula> network's optimal controllability measure is expressed in terms of the number of pinned and free nodes, <inline-formula><tex-math notation="LaTeX">(ii)</tex-math></inline-formula> the optimal feedback gains of pinned nodes are uniform, <inline-formula><tex-math notation="LaTeX">(iii)</tex-math></inline-formula> sum of optimal weight linked to a node is determined in terms of its type and the optimal spectral radius of network, <inline-formula><tex-math notation="LaTeX">(iv)</tex-math></inline-formula> nodes of same type have the same value for the optimal dual SDP variables.]]></description><identifier>ISSN: 0018-9286</identifier><identifier>EISSN: 1558-2523</identifier><identifier>DOI: 10.1109/TAC.2024.3376302</identifier><identifier>CODEN: IETAA9</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Complex networks ; Control stability ; Control systems ; Controllability ; controllability of dynamical networks ; Eigenvalues and eigenfunctions ; Feedback ; Laplace equations ; Network topologies ; Nodes ; Optimization ; Pareto frontier ; Pinning ; pinning control ; Semidefinite programming ; semidefinite programming (SDP) ; Stability ; Synchronism ; Synchronization ; Topology ; Trajectory control</subject><ispartof>IEEE transactions on automatic control, 2024-09, Vol.69 (9), p.6285-6292</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c245t-ee1cb179f3e0d0551cb3f78617098767d6e8e04ea89cda25abe95dcca25b637d3</cites><orcidid>0000-0003-1015-0101</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10468620$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10468620$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Jafarizadeh, Saber</creatorcontrib><title>Undirected Weighted Network Topologies With Best Possible Pinning Controllability</title><title>IEEE transactions on automatic control</title><addtitle>TAC</addtitle><description><![CDATA[Controllability of complex networks through pinning control toward a desired trajectory is crucial for ensuring synchronization stability. Concerned with the local stability of the network's synchronization, here, the controllability problem is addressed different from the literature by incorporating weighted Laplacian and nonuniform feedback gain. This approach has led to a spectral radius minimization problem, where using its semidefinite programming (SDP) formulation leads to a unique optimal point, with uniform feedback gain, on the Pareto frontier. Using this approach, this article has systematically characterized the networks that can achieve the best possible optimal controllability measure. For such networks, it is shown that <inline-formula><tex-math notation="LaTeX">(i)</tex-math></inline-formula> network's optimal controllability measure is expressed in terms of the number of pinned and free nodes, <inline-formula><tex-math notation="LaTeX">(ii)</tex-math></inline-formula> the optimal feedback gains of pinned nodes are uniform, <inline-formula><tex-math notation="LaTeX">(iii)</tex-math></inline-formula> sum of optimal weight linked to a node is determined in terms of its type and the optimal spectral radius of network, <inline-formula><tex-math notation="LaTeX">(iv)</tex-math></inline-formula> nodes of same type have the same value for the optimal dual SDP variables.]]></description><subject>Complex networks</subject><subject>Control stability</subject><subject>Control systems</subject><subject>Controllability</subject><subject>controllability of dynamical networks</subject><subject>Eigenvalues and eigenfunctions</subject><subject>Feedback</subject><subject>Laplace equations</subject><subject>Network topologies</subject><subject>Nodes</subject><subject>Optimization</subject><subject>Pareto frontier</subject><subject>Pinning</subject><subject>pinning control</subject><subject>Semidefinite programming</subject><subject>semidefinite programming (SDP)</subject><subject>Stability</subject><subject>Synchronism</subject><subject>Synchronization</subject><subject>Topology</subject><subject>Trajectory control</subject><issn>0018-9286</issn><issn>1558-2523</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkEtLw0AUhQdRsFb3LlwEXCfOI_Na1uALilZo6XLI46adGjN1JkX6753SLlzdc-Gcew8fQrcEZ4Rg_TCfFBnFNM8Yk4JheoZGhHOVUk7ZORphTFSqqRKX6CqETVxFnpMR-lz0jfVQD9AkS7Cr9UG8w_Dr_Fcyd1vXuZWFkCztsE4eIQzJzIVgqw6Sme1726-SwvWDd11XVrazw_4aXbRlF-DmNMdo8fw0L17T6cfLWzGZpjXN-ZACkLoiUrcMcIM5jxtrpRJEYq2kkI0ABTiHUum6KSkvK9C8qesoK8Fkw8bo_nh3693PLjYzG7fzfXxpGNZSU8o5jy58dNU-9vbQmq2336XfG4LNAZyJ4MwBnDmBi5G7Y8QCwD97LpSgmP0B52xqWw</recordid><startdate>20240901</startdate><enddate>20240901</enddate><creator>Jafarizadeh, Saber</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0003-1015-0101</orcidid></search><sort><creationdate>20240901</creationdate><title>Undirected Weighted Network Topologies With Best Possible Pinning Controllability</title><author>Jafarizadeh, Saber</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c245t-ee1cb179f3e0d0551cb3f78617098767d6e8e04ea89cda25abe95dcca25b637d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Complex networks</topic><topic>Control stability</topic><topic>Control systems</topic><topic>Controllability</topic><topic>controllability of dynamical networks</topic><topic>Eigenvalues and eigenfunctions</topic><topic>Feedback</topic><topic>Laplace equations</topic><topic>Network topologies</topic><topic>Nodes</topic><topic>Optimization</topic><topic>Pareto frontier</topic><topic>Pinning</topic><topic>pinning control</topic><topic>Semidefinite programming</topic><topic>semidefinite programming (SDP)</topic><topic>Stability</topic><topic>Synchronism</topic><topic>Synchronization</topic><topic>Topology</topic><topic>Trajectory control</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jafarizadeh, Saber</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on automatic control</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Jafarizadeh, Saber</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Undirected Weighted Network Topologies With Best Possible Pinning Controllability</atitle><jtitle>IEEE transactions on automatic control</jtitle><stitle>TAC</stitle><date>2024-09-01</date><risdate>2024</risdate><volume>69</volume><issue>9</issue><spage>6285</spage><epage>6292</epage><pages>6285-6292</pages><issn>0018-9286</issn><eissn>1558-2523</eissn><coden>IETAA9</coden><abstract><![CDATA[Controllability of complex networks through pinning control toward a desired trajectory is crucial for ensuring synchronization stability. Concerned with the local stability of the network's synchronization, here, the controllability problem is addressed different from the literature by incorporating weighted Laplacian and nonuniform feedback gain. This approach has led to a spectral radius minimization problem, where using its semidefinite programming (SDP) formulation leads to a unique optimal point, with uniform feedback gain, on the Pareto frontier. Using this approach, this article has systematically characterized the networks that can achieve the best possible optimal controllability measure. For such networks, it is shown that <inline-formula><tex-math notation="LaTeX">(i)</tex-math></inline-formula> network's optimal controllability measure is expressed in terms of the number of pinned and free nodes, <inline-formula><tex-math notation="LaTeX">(ii)</tex-math></inline-formula> the optimal feedback gains of pinned nodes are uniform, <inline-formula><tex-math notation="LaTeX">(iii)</tex-math></inline-formula> sum of optimal weight linked to a node is determined in terms of its type and the optimal spectral radius of network, <inline-formula><tex-math notation="LaTeX">(iv)</tex-math></inline-formula> nodes of same type have the same value for the optimal dual SDP variables.]]></abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TAC.2024.3376302</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0003-1015-0101</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0018-9286 |
ispartof | IEEE transactions on automatic control, 2024-09, Vol.69 (9), p.6285-6292 |
issn | 0018-9286 1558-2523 |
language | eng |
recordid | cdi_proquest_journals_3097922555 |
source | IEEE Electronic Library (IEL) |
subjects | Complex networks Control stability Control systems Controllability controllability of dynamical networks Eigenvalues and eigenfunctions Feedback Laplace equations Network topologies Nodes Optimization Pareto frontier Pinning pinning control Semidefinite programming semidefinite programming (SDP) Stability Synchronism Synchronization Topology Trajectory control |
title | Undirected Weighted Network Topologies With Best Possible Pinning Controllability |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T22%3A43%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Undirected%20Weighted%20Network%20Topologies%20With%20Best%20Possible%20Pinning%20Controllability&rft.jtitle=IEEE%20transactions%20on%20automatic%20control&rft.au=Jafarizadeh,%20Saber&rft.date=2024-09-01&rft.volume=69&rft.issue=9&rft.spage=6285&rft.epage=6292&rft.pages=6285-6292&rft.issn=0018-9286&rft.eissn=1558-2523&rft.coden=IETAA9&rft_id=info:doi/10.1109/TAC.2024.3376302&rft_dat=%3Cproquest_RIE%3E3097922555%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3097922555&rft_id=info:pmid/&rft_ieee_id=10468620&rfr_iscdi=true |