Electrical behaviors of the MXene nanoflower interlayered heterojunction Schottky photodiode devices

Schottky-type photodiodes’ quick responsiveness to light has attracted great attention worldwide. To increase their efficiency as electrodes or interlayers, a variety of materials have been employed. Two-dimensional materials such as MXene with an impressive ability to efficiently absorb light have...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied physics. A, Materials science & processing Materials science & processing, 2024, Vol.130 (9)
Hauptverfasser: Gurbuz, Havva Nur, Hussaini, Ali Akbar, Ipekci, Hasan Huseyin, Durmaz, Fatih, Uzunoglu, Aytekin, Yıldırım, Murat
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 9
container_start_page
container_title Applied physics. A, Materials science & processing
container_volume 130
creator Gurbuz, Havva Nur
Hussaini, Ali Akbar
Ipekci, Hasan Huseyin
Durmaz, Fatih
Uzunoglu, Aytekin
Yıldırım, Murat
description Schottky-type photodiodes’ quick responsiveness to light has attracted great attention worldwide. To increase their efficiency as electrodes or interlayers, a variety of materials have been employed. Two-dimensional materials such as MXene with an impressive ability to efficiently absorb light have been at the core of studies. On the other hand, the restacking challenge of 2-D materials poses important drawbacks limiting the benefit of their surface properties and large surface area. Preparation of 3-D materials using 2-D counterparts has been widely employed to alleviate the restacking problem. In this study, we synthesized 3-D V 2 C MXenes nanoflowers via a simple ultrasonic treatment followed by a freeze-drying process. The 3-D V 2 C MXenes nanoflowers were characterized by SEM, EDS, XRD, FT-IR, and XPS. The 3-D V 2 C MXenes nanoflowers were implemented as interlayers onto p -type and n -type Si wafers. The V 2 C MXenes/ p -Si device has shown an excellent rectification ratio. The devices were measured under various illumination intensities. Electrical parameters were calculated via thermionic emission, Cheung, and Norde methods.
doi_str_mv 10.1007/s00339-024-07823-x
format Article
fullrecord <record><control><sourceid>proquest_sprin</sourceid><recordid>TN_cdi_proquest_journals_3097827948</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3097827948</sourcerecordid><originalsourceid>FETCH-LOGICAL-p157t-b1575c9f683ed670e51d4260a6b196c0608d7dc20d3ca9034d92b636dc33f1b43</originalsourceid><addsrcrecordid>eNpFkE1LAzEQhoMoWKt_wFPAc3Ty0ezmKKV-QMWDCt6W3WTW3bokNUm1_feuVnAO8_LCwww8hJxzuOQAxVUCkNIwEIpBUQrJtgdkwpUUDLSEQzIBowpWSqOPyUlKKxhHCTEhbjGgzbG39UAb7OrPPsREQ0tzh_ThFT1SX_vQDuELI-19xjjUO4zoaIdjCauNt7kPnj7ZLuT8vqPrMYPrg0Pq8LO3mE7JUVsPCc_-ckpebhbP8zu2fLy9n18v2ZrPisyacc-saXUp0ekCcMadEhpq3XCjLWgoXeGsACdtbUAqZ0SjpXZWypY3Sk7Jxf7uOoaPDaZcrcIm-vFlJcGMXgqjypGSeyqtY-_fMP5THKofndVeZzXqrH51Vlv5DbRCak0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3097827948</pqid></control><display><type>article</type><title>Electrical behaviors of the MXene nanoflower interlayered heterojunction Schottky photodiode devices</title><source>SpringerNature Journals</source><creator>Gurbuz, Havva Nur ; Hussaini, Ali Akbar ; Ipekci, Hasan Huseyin ; Durmaz, Fatih ; Uzunoglu, Aytekin ; Yıldırım, Murat</creator><creatorcontrib>Gurbuz, Havva Nur ; Hussaini, Ali Akbar ; Ipekci, Hasan Huseyin ; Durmaz, Fatih ; Uzunoglu, Aytekin ; Yıldırım, Murat</creatorcontrib><description>Schottky-type photodiodes’ quick responsiveness to light has attracted great attention worldwide. To increase their efficiency as electrodes or interlayers, a variety of materials have been employed. Two-dimensional materials such as MXene with an impressive ability to efficiently absorb light have been at the core of studies. On the other hand, the restacking challenge of 2-D materials poses important drawbacks limiting the benefit of their surface properties and large surface area. Preparation of 3-D materials using 2-D counterparts has been widely employed to alleviate the restacking problem. In this study, we synthesized 3-D V 2 C MXenes nanoflowers via a simple ultrasonic treatment followed by a freeze-drying process. The 3-D V 2 C MXenes nanoflowers were characterized by SEM, EDS, XRD, FT-IR, and XPS. The 3-D V 2 C MXenes nanoflowers were implemented as interlayers onto p -type and n -type Si wafers. The V 2 C MXenes/ p -Si device has shown an excellent rectification ratio. The devices were measured under various illumination intensities. Electrical parameters were calculated via thermionic emission, Cheung, and Norde methods.</description><identifier>ISSN: 0947-8396</identifier><identifier>EISSN: 1432-0630</identifier><identifier>DOI: 10.1007/s00339-024-07823-x</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Characterization and Evaluation of Materials ; Condensed Matter Physics ; Heterojunctions ; Interlayers ; Machines ; Manufacturing ; MXenes ; Nanotechnology ; Optical and Electronic Materials ; Photodiodes ; Physics ; Physics and Astronomy ; Processes ; Surface properties ; Surfaces and Interfaces ; Thermionic emission ; Thin Films ; Two dimensional materials ; Ultrasonic processing ; X ray photoelectron spectroscopy</subject><ispartof>Applied physics. A, Materials science &amp; processing, 2024, Vol.130 (9)</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-4541-3752</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00339-024-07823-x$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00339-024-07823-x$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Gurbuz, Havva Nur</creatorcontrib><creatorcontrib>Hussaini, Ali Akbar</creatorcontrib><creatorcontrib>Ipekci, Hasan Huseyin</creatorcontrib><creatorcontrib>Durmaz, Fatih</creatorcontrib><creatorcontrib>Uzunoglu, Aytekin</creatorcontrib><creatorcontrib>Yıldırım, Murat</creatorcontrib><title>Electrical behaviors of the MXene nanoflower interlayered heterojunction Schottky photodiode devices</title><title>Applied physics. A, Materials science &amp; processing</title><addtitle>Appl. Phys. A</addtitle><description>Schottky-type photodiodes’ quick responsiveness to light has attracted great attention worldwide. To increase their efficiency as electrodes or interlayers, a variety of materials have been employed. Two-dimensional materials such as MXene with an impressive ability to efficiently absorb light have been at the core of studies. On the other hand, the restacking challenge of 2-D materials poses important drawbacks limiting the benefit of their surface properties and large surface area. Preparation of 3-D materials using 2-D counterparts has been widely employed to alleviate the restacking problem. In this study, we synthesized 3-D V 2 C MXenes nanoflowers via a simple ultrasonic treatment followed by a freeze-drying process. The 3-D V 2 C MXenes nanoflowers were characterized by SEM, EDS, XRD, FT-IR, and XPS. The 3-D V 2 C MXenes nanoflowers were implemented as interlayers onto p -type and n -type Si wafers. The V 2 C MXenes/ p -Si device has shown an excellent rectification ratio. The devices were measured under various illumination intensities. Electrical parameters were calculated via thermionic emission, Cheung, and Norde methods.</description><subject>Characterization and Evaluation of Materials</subject><subject>Condensed Matter Physics</subject><subject>Heterojunctions</subject><subject>Interlayers</subject><subject>Machines</subject><subject>Manufacturing</subject><subject>MXenes</subject><subject>Nanotechnology</subject><subject>Optical and Electronic Materials</subject><subject>Photodiodes</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Processes</subject><subject>Surface properties</subject><subject>Surfaces and Interfaces</subject><subject>Thermionic emission</subject><subject>Thin Films</subject><subject>Two dimensional materials</subject><subject>Ultrasonic processing</subject><subject>X ray photoelectron spectroscopy</subject><issn>0947-8396</issn><issn>1432-0630</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid/><recordid>eNpFkE1LAzEQhoMoWKt_wFPAc3Ty0ezmKKV-QMWDCt6W3WTW3bokNUm1_feuVnAO8_LCwww8hJxzuOQAxVUCkNIwEIpBUQrJtgdkwpUUDLSEQzIBowpWSqOPyUlKKxhHCTEhbjGgzbG39UAb7OrPPsREQ0tzh_ThFT1SX_vQDuELI-19xjjUO4zoaIdjCauNt7kPnj7ZLuT8vqPrMYPrg0Pq8LO3mE7JUVsPCc_-ckpebhbP8zu2fLy9n18v2ZrPisyacc-saXUp0ekCcMadEhpq3XCjLWgoXeGsACdtbUAqZ0SjpXZWypY3Sk7Jxf7uOoaPDaZcrcIm-vFlJcGMXgqjypGSeyqtY-_fMP5THKofndVeZzXqrH51Vlv5DbRCak0</recordid><startdate>2024</startdate><enddate>2024</enddate><creator>Gurbuz, Havva Nur</creator><creator>Hussaini, Ali Akbar</creator><creator>Ipekci, Hasan Huseyin</creator><creator>Durmaz, Fatih</creator><creator>Uzunoglu, Aytekin</creator><creator>Yıldırım, Murat</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope/><orcidid>https://orcid.org/0000-0002-4541-3752</orcidid></search><sort><creationdate>2024</creationdate><title>Electrical behaviors of the MXene nanoflower interlayered heterojunction Schottky photodiode devices</title><author>Gurbuz, Havva Nur ; Hussaini, Ali Akbar ; Ipekci, Hasan Huseyin ; Durmaz, Fatih ; Uzunoglu, Aytekin ; Yıldırım, Murat</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p157t-b1575c9f683ed670e51d4260a6b196c0608d7dc20d3ca9034d92b636dc33f1b43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Characterization and Evaluation of Materials</topic><topic>Condensed Matter Physics</topic><topic>Heterojunctions</topic><topic>Interlayers</topic><topic>Machines</topic><topic>Manufacturing</topic><topic>MXenes</topic><topic>Nanotechnology</topic><topic>Optical and Electronic Materials</topic><topic>Photodiodes</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Processes</topic><topic>Surface properties</topic><topic>Surfaces and Interfaces</topic><topic>Thermionic emission</topic><topic>Thin Films</topic><topic>Two dimensional materials</topic><topic>Ultrasonic processing</topic><topic>X ray photoelectron spectroscopy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gurbuz, Havva Nur</creatorcontrib><creatorcontrib>Hussaini, Ali Akbar</creatorcontrib><creatorcontrib>Ipekci, Hasan Huseyin</creatorcontrib><creatorcontrib>Durmaz, Fatih</creatorcontrib><creatorcontrib>Uzunoglu, Aytekin</creatorcontrib><creatorcontrib>Yıldırım, Murat</creatorcontrib><jtitle>Applied physics. A, Materials science &amp; processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gurbuz, Havva Nur</au><au>Hussaini, Ali Akbar</au><au>Ipekci, Hasan Huseyin</au><au>Durmaz, Fatih</au><au>Uzunoglu, Aytekin</au><au>Yıldırım, Murat</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Electrical behaviors of the MXene nanoflower interlayered heterojunction Schottky photodiode devices</atitle><jtitle>Applied physics. A, Materials science &amp; processing</jtitle><stitle>Appl. Phys. A</stitle><date>2024</date><risdate>2024</risdate><volume>130</volume><issue>9</issue><issn>0947-8396</issn><eissn>1432-0630</eissn><abstract>Schottky-type photodiodes’ quick responsiveness to light has attracted great attention worldwide. To increase their efficiency as electrodes or interlayers, a variety of materials have been employed. Two-dimensional materials such as MXene with an impressive ability to efficiently absorb light have been at the core of studies. On the other hand, the restacking challenge of 2-D materials poses important drawbacks limiting the benefit of their surface properties and large surface area. Preparation of 3-D materials using 2-D counterparts has been widely employed to alleviate the restacking problem. In this study, we synthesized 3-D V 2 C MXenes nanoflowers via a simple ultrasonic treatment followed by a freeze-drying process. The 3-D V 2 C MXenes nanoflowers were characterized by SEM, EDS, XRD, FT-IR, and XPS. The 3-D V 2 C MXenes nanoflowers were implemented as interlayers onto p -type and n -type Si wafers. The V 2 C MXenes/ p -Si device has shown an excellent rectification ratio. The devices were measured under various illumination intensities. Electrical parameters were calculated via thermionic emission, Cheung, and Norde methods.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00339-024-07823-x</doi><orcidid>https://orcid.org/0000-0002-4541-3752</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0947-8396
ispartof Applied physics. A, Materials science & processing, 2024, Vol.130 (9)
issn 0947-8396
1432-0630
language eng
recordid cdi_proquest_journals_3097827948
source SpringerNature Journals
subjects Characterization and Evaluation of Materials
Condensed Matter Physics
Heterojunctions
Interlayers
Machines
Manufacturing
MXenes
Nanotechnology
Optical and Electronic Materials
Photodiodes
Physics
Physics and Astronomy
Processes
Surface properties
Surfaces and Interfaces
Thermionic emission
Thin Films
Two dimensional materials
Ultrasonic processing
X ray photoelectron spectroscopy
title Electrical behaviors of the MXene nanoflower interlayered heterojunction Schottky photodiode devices
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T19%3A37%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Electrical%20behaviors%20of%20the%20MXene%20nanoflower%20interlayered%20heterojunction%20Schottky%20photodiode%20devices&rft.jtitle=Applied%20physics.%20A,%20Materials%20science%20&%20processing&rft.au=Gurbuz,%20Havva%20Nur&rft.date=2024&rft.volume=130&rft.issue=9&rft.issn=0947-8396&rft.eissn=1432-0630&rft_id=info:doi/10.1007/s00339-024-07823-x&rft_dat=%3Cproquest_sprin%3E3097827948%3C/proquest_sprin%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3097827948&rft_id=info:pmid/&rfr_iscdi=true