ddX: Polarizable continuum solvation from small molecules to proteins
Polarizable continuum solvation models are popular in both, quantum chemistry and in biophysics, though typically with different requirements for the numerical methods. However, the recent trend of multiscale modeling can be expected to blur field‐specific differences. In this regard, numerical meth...
Gespeichert in:
Veröffentlicht in: | Wiley interdisciplinary reviews. Computational molecular science 2024-07, Vol.14 (4), p.e1726-n/a |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Polarizable continuum solvation models are popular in both, quantum chemistry and in biophysics, though typically with different requirements for the numerical methods. However, the recent trend of multiscale modeling can be expected to blur field‐specific differences. In this regard, numerical methods based on domain decomposition (dd) have been demonstrated to be sufficiently flexible to be applied all across these levels of theory while remaining systematically accurate and efficient. In this contribution, we present ddX, an open‐source implementation of dd‐methods for various solvation models, which features a uniform interface with classical as well as quantum descriptions of the solute, or any hybrid versions thereof. We explain the key concepts of the library design and its application program interface, and demonstrate the use of ddX for integrating into standard chemistry packages. Numerical tests illustrate the performance of ddX and its interfaces.
This article is categorized under:
Software > Quantum Chemistry
Software > Simulation Methods
Polarizable continuum solvation from small molecules to proteins. |
---|---|
ISSN: | 1759-0876 1759-0884 |
DOI: | 10.1002/wcms.1726 |