Automated Screening System for Grading of Retinal Abnormalities

Detection and grading of diabetic retinopathy in the at-risk population (diabetics) is crucial for providing timely treatment thereby preventing visual loss. On the basis of the most common systems, such as the National Health Service's (NHS) Program, the Scottish Grading Scheme (SGS), and the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Revue d'Intelligence Artificielle 2024-06, Vol.38 (3), p.1045-1053
Hauptverfasser: Jaafar, Hussain F., Shaker, Mahmoud, Abdulridha, Hayder Mahdi, Khalaf, Akram Jaddoa
Format: Artikel
Sprache:eng ; fre
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1053
container_issue 3
container_start_page 1045
container_title Revue d'Intelligence Artificielle
container_volume 38
creator Jaafar, Hussain F.
Shaker, Mahmoud
Abdulridha, Hayder Mahdi
Khalaf, Akram Jaddoa
description Detection and grading of diabetic retinopathy in the at-risk population (diabetics) is crucial for providing timely treatment thereby preventing visual loss. On the basis of the most common systems, such as the National Health Service's (NHS) Program, the Scottish Grading Scheme (SGS), and the Early Treatment Diabetic Retinopathy System (ETDRS), we establish a novel automated diabetic retinopathy grading system. Medical criteria based on information from all these systems are used to grade the severity of diabetic retinopathy by calculating numbers and sizes of detected abnormalities throughout specified fields around the fovea (center of vision). The main purpose of this work is to develop a new automated diabetic retinopathy grading system based on medical systems, namely NHS program, SGS, ETDRS, and EyePACS protocol. The proposed system achieved overall success rate of 98.8% for a set of 50 images from Messidor Database and 98.4% when we use the set of 80 images from DIARETDB1. The results of the proposed system have been compared with the other existing systems in the literature and shows higher values of the overall success rate. These results assure that this system could be used for a computer-aided mass detection and grading of diabetic retinopathy as part of an automatic, fast, and accurate screening regime.
doi_str_mv 10.18280/ria.380330
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3097442664</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3097442664</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1010-c5678aaf719a1b1bed333c1b19e1c95b0f23265284183964cbf3aa5eb9fd0d3b3</originalsourceid><addsrcrecordid>eNotkEFLwzAcxYMoOOZOfoGCR-lM8k_T5CRl6BQGglPwFpI0kUjbzKQ77Ntbraf3eDwejx9C1wSviaAC36Wg1yAwAD5DCyIrUVY1E-dogaWkJZPy4xKtcg4GM84pcIYX6L45jrHXo2uLvU3ODWH4LPanPLq-8DEV26Tb3yj64tWNYdBd0Zghpl53YQwuX6ELr7vsVv-6RO-PD2-bp3L3sn3eNLvSEkxwaSteC619TaQmhhjXAoCdnHTEyspgT4HyigpGBEjOrPGgdeWM9C1uwcAS3cy7hxS_jy6P6ise03QnK8CyZoxyzqbW7dyyKeacnFeHFHqdTopg9QdJTZDUDAl-ALxnWVU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3097442664</pqid></control><display><type>article</type><title>Automated Screening System for Grading of Retinal Abnormalities</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Jaafar, Hussain F. ; Shaker, Mahmoud ; Abdulridha, Hayder Mahdi ; Khalaf, Akram Jaddoa</creator><creatorcontrib>Jaafar, Hussain F. ; Shaker, Mahmoud ; Abdulridha, Hayder Mahdi ; Khalaf, Akram Jaddoa</creatorcontrib><description>Detection and grading of diabetic retinopathy in the at-risk population (diabetics) is crucial for providing timely treatment thereby preventing visual loss. On the basis of the most common systems, such as the National Health Service's (NHS) Program, the Scottish Grading Scheme (SGS), and the Early Treatment Diabetic Retinopathy System (ETDRS), we establish a novel automated diabetic retinopathy grading system. Medical criteria based on information from all these systems are used to grade the severity of diabetic retinopathy by calculating numbers and sizes of detected abnormalities throughout specified fields around the fovea (center of vision). The main purpose of this work is to develop a new automated diabetic retinopathy grading system based on medical systems, namely NHS program, SGS, ETDRS, and EyePACS protocol. The proposed system achieved overall success rate of 98.8% for a set of 50 images from Messidor Database and 98.4% when we use the set of 80 images from DIARETDB1. The results of the proposed system have been compared with the other existing systems in the literature and shows higher values of the overall success rate. These results assure that this system could be used for a computer-aided mass detection and grading of diabetic retinopathy as part of an automatic, fast, and accurate screening regime.</description><identifier>ISSN: 0992-499X</identifier><identifier>EISSN: 1958-5748</identifier><identifier>DOI: 10.18280/ria.380330</identifier><language>eng ; fre</language><publisher>Edmonton: International Information and Engineering Technology Association (IIETA)</publisher><subject>Abnormalities ; Accuracy ; Automation ; Deep learning ; Diabetes ; Diabetic retinopathy ; Edema ; Fovea ; Health services ; Medical personnel ; Medical screening</subject><ispartof>Revue d'Intelligence Artificielle, 2024-06, Vol.38 (3), p.1045-1053</ispartof><rights>2024. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Jaafar, Hussain F.</creatorcontrib><creatorcontrib>Shaker, Mahmoud</creatorcontrib><creatorcontrib>Abdulridha, Hayder Mahdi</creatorcontrib><creatorcontrib>Khalaf, Akram Jaddoa</creatorcontrib><title>Automated Screening System for Grading of Retinal Abnormalities</title><title>Revue d'Intelligence Artificielle</title><description>Detection and grading of diabetic retinopathy in the at-risk population (diabetics) is crucial for providing timely treatment thereby preventing visual loss. On the basis of the most common systems, such as the National Health Service's (NHS) Program, the Scottish Grading Scheme (SGS), and the Early Treatment Diabetic Retinopathy System (ETDRS), we establish a novel automated diabetic retinopathy grading system. Medical criteria based on information from all these systems are used to grade the severity of diabetic retinopathy by calculating numbers and sizes of detected abnormalities throughout specified fields around the fovea (center of vision). The main purpose of this work is to develop a new automated diabetic retinopathy grading system based on medical systems, namely NHS program, SGS, ETDRS, and EyePACS protocol. The proposed system achieved overall success rate of 98.8% for a set of 50 images from Messidor Database and 98.4% when we use the set of 80 images from DIARETDB1. The results of the proposed system have been compared with the other existing systems in the literature and shows higher values of the overall success rate. These results assure that this system could be used for a computer-aided mass detection and grading of diabetic retinopathy as part of an automatic, fast, and accurate screening regime.</description><subject>Abnormalities</subject><subject>Accuracy</subject><subject>Automation</subject><subject>Deep learning</subject><subject>Diabetes</subject><subject>Diabetic retinopathy</subject><subject>Edema</subject><subject>Fovea</subject><subject>Health services</subject><subject>Medical personnel</subject><subject>Medical screening</subject><issn>0992-499X</issn><issn>1958-5748</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNotkEFLwzAcxYMoOOZOfoGCR-lM8k_T5CRl6BQGglPwFpI0kUjbzKQ77Ntbraf3eDwejx9C1wSviaAC36Wg1yAwAD5DCyIrUVY1E-dogaWkJZPy4xKtcg4GM84pcIYX6L45jrHXo2uLvU3ODWH4LPanPLq-8DEV26Tb3yj64tWNYdBd0Zghpl53YQwuX6ELr7vsVv-6RO-PD2-bp3L3sn3eNLvSEkxwaSteC619TaQmhhjXAoCdnHTEyspgT4HyigpGBEjOrPGgdeWM9C1uwcAS3cy7hxS_jy6P6ise03QnK8CyZoxyzqbW7dyyKeacnFeHFHqdTopg9QdJTZDUDAl-ALxnWVU</recordid><startdate>20240621</startdate><enddate>20240621</enddate><creator>Jaafar, Hussain F.</creator><creator>Shaker, Mahmoud</creator><creator>Abdulridha, Hayder Mahdi</creator><creator>Khalaf, Akram Jaddoa</creator><general>International Information and Engineering Technology Association (IIETA)</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20240621</creationdate><title>Automated Screening System for Grading of Retinal Abnormalities</title><author>Jaafar, Hussain F. ; Shaker, Mahmoud ; Abdulridha, Hayder Mahdi ; Khalaf, Akram Jaddoa</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1010-c5678aaf719a1b1bed333c1b19e1c95b0f23265284183964cbf3aa5eb9fd0d3b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng ; fre</language><creationdate>2024</creationdate><topic>Abnormalities</topic><topic>Accuracy</topic><topic>Automation</topic><topic>Deep learning</topic><topic>Diabetes</topic><topic>Diabetic retinopathy</topic><topic>Edema</topic><topic>Fovea</topic><topic>Health services</topic><topic>Medical personnel</topic><topic>Medical screening</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jaafar, Hussain F.</creatorcontrib><creatorcontrib>Shaker, Mahmoud</creatorcontrib><creatorcontrib>Abdulridha, Hayder Mahdi</creatorcontrib><creatorcontrib>Khalaf, Akram Jaddoa</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>Revue d'Intelligence Artificielle</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jaafar, Hussain F.</au><au>Shaker, Mahmoud</au><au>Abdulridha, Hayder Mahdi</au><au>Khalaf, Akram Jaddoa</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Automated Screening System for Grading of Retinal Abnormalities</atitle><jtitle>Revue d'Intelligence Artificielle</jtitle><date>2024-06-21</date><risdate>2024</risdate><volume>38</volume><issue>3</issue><spage>1045</spage><epage>1053</epage><pages>1045-1053</pages><issn>0992-499X</issn><eissn>1958-5748</eissn><abstract>Detection and grading of diabetic retinopathy in the at-risk population (diabetics) is crucial for providing timely treatment thereby preventing visual loss. On the basis of the most common systems, such as the National Health Service's (NHS) Program, the Scottish Grading Scheme (SGS), and the Early Treatment Diabetic Retinopathy System (ETDRS), we establish a novel automated diabetic retinopathy grading system. Medical criteria based on information from all these systems are used to grade the severity of diabetic retinopathy by calculating numbers and sizes of detected abnormalities throughout specified fields around the fovea (center of vision). The main purpose of this work is to develop a new automated diabetic retinopathy grading system based on medical systems, namely NHS program, SGS, ETDRS, and EyePACS protocol. The proposed system achieved overall success rate of 98.8% for a set of 50 images from Messidor Database and 98.4% when we use the set of 80 images from DIARETDB1. The results of the proposed system have been compared with the other existing systems in the literature and shows higher values of the overall success rate. These results assure that this system could be used for a computer-aided mass detection and grading of diabetic retinopathy as part of an automatic, fast, and accurate screening regime.</abstract><cop>Edmonton</cop><pub>International Information and Engineering Technology Association (IIETA)</pub><doi>10.18280/ria.380330</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0992-499X
ispartof Revue d'Intelligence Artificielle, 2024-06, Vol.38 (3), p.1045-1053
issn 0992-499X
1958-5748
language eng ; fre
recordid cdi_proquest_journals_3097442664
source Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Abnormalities
Accuracy
Automation
Deep learning
Diabetes
Diabetic retinopathy
Edema
Fovea
Health services
Medical personnel
Medical screening
title Automated Screening System for Grading of Retinal Abnormalities
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T20%3A23%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Automated%20Screening%20System%20for%20Grading%20of%20Retinal%20Abnormalities&rft.jtitle=Revue%20d'Intelligence%20Artificielle&rft.au=Jaafar,%20Hussain%20F.&rft.date=2024-06-21&rft.volume=38&rft.issue=3&rft.spage=1045&rft.epage=1053&rft.pages=1045-1053&rft.issn=0992-499X&rft.eissn=1958-5748&rft_id=info:doi/10.18280/ria.380330&rft_dat=%3Cproquest_cross%3E3097442664%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3097442664&rft_id=info:pmid/&rfr_iscdi=true