Automated Screening System for Grading of Retinal Abnormalities
Detection and grading of diabetic retinopathy in the at-risk population (diabetics) is crucial for providing timely treatment thereby preventing visual loss. On the basis of the most common systems, such as the National Health Service's (NHS) Program, the Scottish Grading Scheme (SGS), and the...
Gespeichert in:
Veröffentlicht in: | Revue d'Intelligence Artificielle 2024-06, Vol.38 (3), p.1045-1053 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng ; fre |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1053 |
---|---|
container_issue | 3 |
container_start_page | 1045 |
container_title | Revue d'Intelligence Artificielle |
container_volume | 38 |
creator | Jaafar, Hussain F. Shaker, Mahmoud Abdulridha, Hayder Mahdi Khalaf, Akram Jaddoa |
description | Detection and grading of diabetic retinopathy in the at-risk population (diabetics) is crucial for providing timely treatment thereby preventing visual loss. On the basis of the most common systems, such as the National Health Service's (NHS) Program, the Scottish Grading Scheme (SGS), and the Early Treatment Diabetic Retinopathy System (ETDRS), we establish a novel automated diabetic retinopathy grading system. Medical criteria based on information from all these systems are used to grade the severity of diabetic retinopathy by calculating numbers and sizes of detected abnormalities throughout specified fields around the fovea (center of vision). The main purpose of this work is to develop a new automated diabetic retinopathy grading system based on medical systems, namely NHS program, SGS, ETDRS, and EyePACS protocol. The proposed system achieved overall success rate of 98.8% for a set of 50 images from Messidor Database and 98.4% when we use the set of 80 images from DIARETDB1. The results of the proposed system have been compared with the other existing systems in the literature and shows higher values of the overall success rate. These results assure that this system could be used for a computer-aided mass detection and grading of diabetic retinopathy as part of an automatic, fast, and accurate screening regime. |
doi_str_mv | 10.18280/ria.380330 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3097442664</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3097442664</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1010-c5678aaf719a1b1bed333c1b19e1c95b0f23265284183964cbf3aa5eb9fd0d3b3</originalsourceid><addsrcrecordid>eNotkEFLwzAcxYMoOOZOfoGCR-lM8k_T5CRl6BQGglPwFpI0kUjbzKQ77Ntbraf3eDwejx9C1wSviaAC36Wg1yAwAD5DCyIrUVY1E-dogaWkJZPy4xKtcg4GM84pcIYX6L45jrHXo2uLvU3ODWH4LPanPLq-8DEV26Tb3yj64tWNYdBd0Zghpl53YQwuX6ELr7vsVv-6RO-PD2-bp3L3sn3eNLvSEkxwaSteC619TaQmhhjXAoCdnHTEyspgT4HyigpGBEjOrPGgdeWM9C1uwcAS3cy7hxS_jy6P6ise03QnK8CyZoxyzqbW7dyyKeacnFeHFHqdTopg9QdJTZDUDAl-ALxnWVU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3097442664</pqid></control><display><type>article</type><title>Automated Screening System for Grading of Retinal Abnormalities</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Jaafar, Hussain F. ; Shaker, Mahmoud ; Abdulridha, Hayder Mahdi ; Khalaf, Akram Jaddoa</creator><creatorcontrib>Jaafar, Hussain F. ; Shaker, Mahmoud ; Abdulridha, Hayder Mahdi ; Khalaf, Akram Jaddoa</creatorcontrib><description>Detection and grading of diabetic retinopathy in the at-risk population (diabetics) is crucial for providing timely treatment thereby preventing visual loss. On the basis of the most common systems, such as the National Health Service's (NHS) Program, the Scottish Grading Scheme (SGS), and the Early Treatment Diabetic Retinopathy System (ETDRS), we establish a novel automated diabetic retinopathy grading system. Medical criteria based on information from all these systems are used to grade the severity of diabetic retinopathy by calculating numbers and sizes of detected abnormalities throughout specified fields around the fovea (center of vision). The main purpose of this work is to develop a new automated diabetic retinopathy grading system based on medical systems, namely NHS program, SGS, ETDRS, and EyePACS protocol. The proposed system achieved overall success rate of 98.8% for a set of 50 images from Messidor Database and 98.4% when we use the set of 80 images from DIARETDB1. The results of the proposed system have been compared with the other existing systems in the literature and shows higher values of the overall success rate. These results assure that this system could be used for a computer-aided mass detection and grading of diabetic retinopathy as part of an automatic, fast, and accurate screening regime.</description><identifier>ISSN: 0992-499X</identifier><identifier>EISSN: 1958-5748</identifier><identifier>DOI: 10.18280/ria.380330</identifier><language>eng ; fre</language><publisher>Edmonton: International Information and Engineering Technology Association (IIETA)</publisher><subject>Abnormalities ; Accuracy ; Automation ; Deep learning ; Diabetes ; Diabetic retinopathy ; Edema ; Fovea ; Health services ; Medical personnel ; Medical screening</subject><ispartof>Revue d'Intelligence Artificielle, 2024-06, Vol.38 (3), p.1045-1053</ispartof><rights>2024. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Jaafar, Hussain F.</creatorcontrib><creatorcontrib>Shaker, Mahmoud</creatorcontrib><creatorcontrib>Abdulridha, Hayder Mahdi</creatorcontrib><creatorcontrib>Khalaf, Akram Jaddoa</creatorcontrib><title>Automated Screening System for Grading of Retinal Abnormalities</title><title>Revue d'Intelligence Artificielle</title><description>Detection and grading of diabetic retinopathy in the at-risk population (diabetics) is crucial for providing timely treatment thereby preventing visual loss. On the basis of the most common systems, such as the National Health Service's (NHS) Program, the Scottish Grading Scheme (SGS), and the Early Treatment Diabetic Retinopathy System (ETDRS), we establish a novel automated diabetic retinopathy grading system. Medical criteria based on information from all these systems are used to grade the severity of diabetic retinopathy by calculating numbers and sizes of detected abnormalities throughout specified fields around the fovea (center of vision). The main purpose of this work is to develop a new automated diabetic retinopathy grading system based on medical systems, namely NHS program, SGS, ETDRS, and EyePACS protocol. The proposed system achieved overall success rate of 98.8% for a set of 50 images from Messidor Database and 98.4% when we use the set of 80 images from DIARETDB1. The results of the proposed system have been compared with the other existing systems in the literature and shows higher values of the overall success rate. These results assure that this system could be used for a computer-aided mass detection and grading of diabetic retinopathy as part of an automatic, fast, and accurate screening regime.</description><subject>Abnormalities</subject><subject>Accuracy</subject><subject>Automation</subject><subject>Deep learning</subject><subject>Diabetes</subject><subject>Diabetic retinopathy</subject><subject>Edema</subject><subject>Fovea</subject><subject>Health services</subject><subject>Medical personnel</subject><subject>Medical screening</subject><issn>0992-499X</issn><issn>1958-5748</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNotkEFLwzAcxYMoOOZOfoGCR-lM8k_T5CRl6BQGglPwFpI0kUjbzKQ77Ntbraf3eDwejx9C1wSviaAC36Wg1yAwAD5DCyIrUVY1E-dogaWkJZPy4xKtcg4GM84pcIYX6L45jrHXo2uLvU3ODWH4LPanPLq-8DEV26Tb3yj64tWNYdBd0Zghpl53YQwuX6ELr7vsVv-6RO-PD2-bp3L3sn3eNLvSEkxwaSteC619TaQmhhjXAoCdnHTEyspgT4HyigpGBEjOrPGgdeWM9C1uwcAS3cy7hxS_jy6P6ise03QnK8CyZoxyzqbW7dyyKeacnFeHFHqdTopg9QdJTZDUDAl-ALxnWVU</recordid><startdate>20240621</startdate><enddate>20240621</enddate><creator>Jaafar, Hussain F.</creator><creator>Shaker, Mahmoud</creator><creator>Abdulridha, Hayder Mahdi</creator><creator>Khalaf, Akram Jaddoa</creator><general>International Information and Engineering Technology Association (IIETA)</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20240621</creationdate><title>Automated Screening System for Grading of Retinal Abnormalities</title><author>Jaafar, Hussain F. ; Shaker, Mahmoud ; Abdulridha, Hayder Mahdi ; Khalaf, Akram Jaddoa</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1010-c5678aaf719a1b1bed333c1b19e1c95b0f23265284183964cbf3aa5eb9fd0d3b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng ; fre</language><creationdate>2024</creationdate><topic>Abnormalities</topic><topic>Accuracy</topic><topic>Automation</topic><topic>Deep learning</topic><topic>Diabetes</topic><topic>Diabetic retinopathy</topic><topic>Edema</topic><topic>Fovea</topic><topic>Health services</topic><topic>Medical personnel</topic><topic>Medical screening</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jaafar, Hussain F.</creatorcontrib><creatorcontrib>Shaker, Mahmoud</creatorcontrib><creatorcontrib>Abdulridha, Hayder Mahdi</creatorcontrib><creatorcontrib>Khalaf, Akram Jaddoa</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>Revue d'Intelligence Artificielle</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jaafar, Hussain F.</au><au>Shaker, Mahmoud</au><au>Abdulridha, Hayder Mahdi</au><au>Khalaf, Akram Jaddoa</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Automated Screening System for Grading of Retinal Abnormalities</atitle><jtitle>Revue d'Intelligence Artificielle</jtitle><date>2024-06-21</date><risdate>2024</risdate><volume>38</volume><issue>3</issue><spage>1045</spage><epage>1053</epage><pages>1045-1053</pages><issn>0992-499X</issn><eissn>1958-5748</eissn><abstract>Detection and grading of diabetic retinopathy in the at-risk population (diabetics) is crucial for providing timely treatment thereby preventing visual loss. On the basis of the most common systems, such as the National Health Service's (NHS) Program, the Scottish Grading Scheme (SGS), and the Early Treatment Diabetic Retinopathy System (ETDRS), we establish a novel automated diabetic retinopathy grading system. Medical criteria based on information from all these systems are used to grade the severity of diabetic retinopathy by calculating numbers and sizes of detected abnormalities throughout specified fields around the fovea (center of vision). The main purpose of this work is to develop a new automated diabetic retinopathy grading system based on medical systems, namely NHS program, SGS, ETDRS, and EyePACS protocol. The proposed system achieved overall success rate of 98.8% for a set of 50 images from Messidor Database and 98.4% when we use the set of 80 images from DIARETDB1. The results of the proposed system have been compared with the other existing systems in the literature and shows higher values of the overall success rate. These results assure that this system could be used for a computer-aided mass detection and grading of diabetic retinopathy as part of an automatic, fast, and accurate screening regime.</abstract><cop>Edmonton</cop><pub>International Information and Engineering Technology Association (IIETA)</pub><doi>10.18280/ria.380330</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0992-499X |
ispartof | Revue d'Intelligence Artificielle, 2024-06, Vol.38 (3), p.1045-1053 |
issn | 0992-499X 1958-5748 |
language | eng ; fre |
recordid | cdi_proquest_journals_3097442664 |
source | Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | Abnormalities Accuracy Automation Deep learning Diabetes Diabetic retinopathy Edema Fovea Health services Medical personnel Medical screening |
title | Automated Screening System for Grading of Retinal Abnormalities |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T20%3A23%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Automated%20Screening%20System%20for%20Grading%20of%20Retinal%20Abnormalities&rft.jtitle=Revue%20d'Intelligence%20Artificielle&rft.au=Jaafar,%20Hussain%20F.&rft.date=2024-06-21&rft.volume=38&rft.issue=3&rft.spage=1045&rft.epage=1053&rft.pages=1045-1053&rft.issn=0992-499X&rft.eissn=1958-5748&rft_id=info:doi/10.18280/ria.380330&rft_dat=%3Cproquest_cross%3E3097442664%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3097442664&rft_id=info:pmid/&rfr_iscdi=true |