Design and Enactment Evaluation of Adaptive Artifacts Removal from EEG Signal Records

Various factors, such as electrical power lines, EOG or ECG interference, contribute to artefacts in Electroencephalogram (EEG) data, complicating EEG analysis and clinical interpretation. Developing specialized filters to mitigate these artefacts is crucial. Artefacts from eye movements and blinks...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Revue d'Intelligence Artificielle 2024-08, Vol.38 (4), p.1353-1359
Hauptverfasser: Kaliya Perumal, Ramu, Raju, S.V.S. Rama Krishnam, Chandanan, Amit Kumar, Manasa, Dasari, Pandey, Rajeev, Dileep Kumar, Modugu, Vishwanath, Neerugatti Varipallay, Kashyap, Tanuja
Format: Artikel
Sprache:eng ; fre
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1359
container_issue 4
container_start_page 1353
container_title Revue d'Intelligence Artificielle
container_volume 38
creator Kaliya Perumal, Ramu
Raju, S.V.S. Rama Krishnam
Chandanan, Amit Kumar
Manasa, Dasari
Pandey, Rajeev
Dileep Kumar, Modugu
Vishwanath, Neerugatti Varipallay
Kashyap, Tanuja
description Various factors, such as electrical power lines, EOG or ECG interference, contribute to artefacts in Electroencephalogram (EEG) data, complicating EEG analysis and clinical interpretation. Developing specialized filters to mitigate these artefacts is crucial. Artefacts from eye movements and blinks have been extensively studied, prompting the development of an FLM optimization-based learning technique for a Neural Network (NN)-enhanced adaptive filtering model to address them. Initially, Firefly (FF) and LM adaptive filter algorithms analyze EEG data to determine optimal weights. These weights are then incorporated into the NN for adaptive filtering. The resulting technique effectively eliminates artefacts. Performance evaluation, based on Signal to Noise Ratio (SNR), Root Mean Square Error (RMSE), Mean Square Error (MSE), and computing time, compares the proposed method with conventional approaches. Results demonstrate a significant 92% improvement in SNR, indicating the efficiency of the proposed technique. This advancement holds promise for enhancing EEG data quality and facilitating more accurate clinical assessments.
doi_str_mv 10.18280/ria.380429
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3097442609</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3097442609</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1019-2e9dcab9681493f5a6723b90b23f94c492727b080f03ce66bcd5fe87197f653</originalsourceid><addsrcrecordid>eNotkF1LwzAYhYMoOOau_AMBL6UzX03zXo5ZpzAQNgXvSpomElmbmXQD_73BenU48HA4PAjdUrKkiinyEL1eckUEgws0o1CqoqyEukQzAsAKAfBxjRYp-ZYIKRmXgszQ-6NN_nPAeuhwPWgz9nYYcX3Wh5MefRhwcHjV6ePozxav4uhdZhLe2T5kBrsYelzXG7zPI7nvrAmxSzfoyulDsov_nKP9U_22fi62r5uX9WpbGEooFMxCZ3QLUlEB3JVaVoy3QFrGHQgjgFWsaokijnBjpWxNVzqrKgqVkyWfo7tp9RjD98mmsfkKp5hvpIYTqIRgkkCm7ifKxJBStK45Rt_r-NNQ0vyJa7K4ZhLHfwGH2l-R</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3097442609</pqid></control><display><type>article</type><title>Design and Enactment Evaluation of Adaptive Artifacts Removal from EEG Signal Records</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Kaliya Perumal, Ramu ; Raju, S.V.S. Rama Krishnam ; Chandanan, Amit Kumar ; Manasa, Dasari ; Pandey, Rajeev ; Dileep Kumar, Modugu ; Vishwanath, Neerugatti Varipallay ; Kashyap, Tanuja</creator><creatorcontrib>Kaliya Perumal, Ramu ; Raju, S.V.S. Rama Krishnam ; Chandanan, Amit Kumar ; Manasa, Dasari ; Pandey, Rajeev ; Dileep Kumar, Modugu ; Vishwanath, Neerugatti Varipallay ; Kashyap, Tanuja</creatorcontrib><description>Various factors, such as electrical power lines, EOG or ECG interference, contribute to artefacts in Electroencephalogram (EEG) data, complicating EEG analysis and clinical interpretation. Developing specialized filters to mitigate these artefacts is crucial. Artefacts from eye movements and blinks have been extensively studied, prompting the development of an FLM optimization-based learning technique for a Neural Network (NN)-enhanced adaptive filtering model to address them. Initially, Firefly (FF) and LM adaptive filter algorithms analyze EEG data to determine optimal weights. These weights are then incorporated into the NN for adaptive filtering. The resulting technique effectively eliminates artefacts. Performance evaluation, based on Signal to Noise Ratio (SNR), Root Mean Square Error (RMSE), Mean Square Error (MSE), and computing time, compares the proposed method with conventional approaches. Results demonstrate a significant 92% improvement in SNR, indicating the efficiency of the proposed technique. This advancement holds promise for enhancing EEG data quality and facilitating more accurate clinical assessments.</description><identifier>ISSN: 0992-499X</identifier><identifier>EISSN: 1958-5748</identifier><identifier>DOI: 10.18280/ria.380429</identifier><language>eng ; fre</language><publisher>Edmonton: International Information and Engineering Technology Association (IIETA)</publisher><subject>Adaptive algorithms ; Adaptive filters ; Algorithms ; Computing time ; Data analysis ; Design factors ; Electroencephalography ; Eye movements ; Mean square errors ; Medical research ; Methods ; Neural networks ; Noise control ; Optimization ; Performance evaluation ; Physiology ; Power lines ; Root-mean-square errors ; Sensors ; Signal processing ; Signal to noise ratio ; Time series</subject><ispartof>Revue d'Intelligence Artificielle, 2024-08, Vol.38 (4), p.1353-1359</ispartof><rights>2024. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Kaliya Perumal, Ramu</creatorcontrib><creatorcontrib>Raju, S.V.S. Rama Krishnam</creatorcontrib><creatorcontrib>Chandanan, Amit Kumar</creatorcontrib><creatorcontrib>Manasa, Dasari</creatorcontrib><creatorcontrib>Pandey, Rajeev</creatorcontrib><creatorcontrib>Dileep Kumar, Modugu</creatorcontrib><creatorcontrib>Vishwanath, Neerugatti Varipallay</creatorcontrib><creatorcontrib>Kashyap, Tanuja</creatorcontrib><title>Design and Enactment Evaluation of Adaptive Artifacts Removal from EEG Signal Records</title><title>Revue d'Intelligence Artificielle</title><description>Various factors, such as electrical power lines, EOG or ECG interference, contribute to artefacts in Electroencephalogram (EEG) data, complicating EEG analysis and clinical interpretation. Developing specialized filters to mitigate these artefacts is crucial. Artefacts from eye movements and blinks have been extensively studied, prompting the development of an FLM optimization-based learning technique for a Neural Network (NN)-enhanced adaptive filtering model to address them. Initially, Firefly (FF) and LM adaptive filter algorithms analyze EEG data to determine optimal weights. These weights are then incorporated into the NN for adaptive filtering. The resulting technique effectively eliminates artefacts. Performance evaluation, based on Signal to Noise Ratio (SNR), Root Mean Square Error (RMSE), Mean Square Error (MSE), and computing time, compares the proposed method with conventional approaches. Results demonstrate a significant 92% improvement in SNR, indicating the efficiency of the proposed technique. This advancement holds promise for enhancing EEG data quality and facilitating more accurate clinical assessments.</description><subject>Adaptive algorithms</subject><subject>Adaptive filters</subject><subject>Algorithms</subject><subject>Computing time</subject><subject>Data analysis</subject><subject>Design factors</subject><subject>Electroencephalography</subject><subject>Eye movements</subject><subject>Mean square errors</subject><subject>Medical research</subject><subject>Methods</subject><subject>Neural networks</subject><subject>Noise control</subject><subject>Optimization</subject><subject>Performance evaluation</subject><subject>Physiology</subject><subject>Power lines</subject><subject>Root-mean-square errors</subject><subject>Sensors</subject><subject>Signal processing</subject><subject>Signal to noise ratio</subject><subject>Time series</subject><issn>0992-499X</issn><issn>1958-5748</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNotkF1LwzAYhYMoOOau_AMBL6UzX03zXo5ZpzAQNgXvSpomElmbmXQD_73BenU48HA4PAjdUrKkiinyEL1eckUEgws0o1CqoqyEukQzAsAKAfBxjRYp-ZYIKRmXgszQ-6NN_nPAeuhwPWgz9nYYcX3Wh5MefRhwcHjV6ePozxav4uhdZhLe2T5kBrsYelzXG7zPI7nvrAmxSzfoyulDsov_nKP9U_22fi62r5uX9WpbGEooFMxCZ3QLUlEB3JVaVoy3QFrGHQgjgFWsaokijnBjpWxNVzqrKgqVkyWfo7tp9RjD98mmsfkKp5hvpIYTqIRgkkCm7ifKxJBStK45Rt_r-NNQ0vyJa7K4ZhLHfwGH2l-R</recordid><startdate>20240823</startdate><enddate>20240823</enddate><creator>Kaliya Perumal, Ramu</creator><creator>Raju, S.V.S. Rama Krishnam</creator><creator>Chandanan, Amit Kumar</creator><creator>Manasa, Dasari</creator><creator>Pandey, Rajeev</creator><creator>Dileep Kumar, Modugu</creator><creator>Vishwanath, Neerugatti Varipallay</creator><creator>Kashyap, Tanuja</creator><general>International Information and Engineering Technology Association (IIETA)</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20240823</creationdate><title>Design and Enactment Evaluation of Adaptive Artifacts Removal from EEG Signal Records</title><author>Kaliya Perumal, Ramu ; Raju, S.V.S. Rama Krishnam ; Chandanan, Amit Kumar ; Manasa, Dasari ; Pandey, Rajeev ; Dileep Kumar, Modugu ; Vishwanath, Neerugatti Varipallay ; Kashyap, Tanuja</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1019-2e9dcab9681493f5a6723b90b23f94c492727b080f03ce66bcd5fe87197f653</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng ; fre</language><creationdate>2024</creationdate><topic>Adaptive algorithms</topic><topic>Adaptive filters</topic><topic>Algorithms</topic><topic>Computing time</topic><topic>Data analysis</topic><topic>Design factors</topic><topic>Electroencephalography</topic><topic>Eye movements</topic><topic>Mean square errors</topic><topic>Medical research</topic><topic>Methods</topic><topic>Neural networks</topic><topic>Noise control</topic><topic>Optimization</topic><topic>Performance evaluation</topic><topic>Physiology</topic><topic>Power lines</topic><topic>Root-mean-square errors</topic><topic>Sensors</topic><topic>Signal processing</topic><topic>Signal to noise ratio</topic><topic>Time series</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kaliya Perumal, Ramu</creatorcontrib><creatorcontrib>Raju, S.V.S. Rama Krishnam</creatorcontrib><creatorcontrib>Chandanan, Amit Kumar</creatorcontrib><creatorcontrib>Manasa, Dasari</creatorcontrib><creatorcontrib>Pandey, Rajeev</creatorcontrib><creatorcontrib>Dileep Kumar, Modugu</creatorcontrib><creatorcontrib>Vishwanath, Neerugatti Varipallay</creatorcontrib><creatorcontrib>Kashyap, Tanuja</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>Revue d'Intelligence Artificielle</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kaliya Perumal, Ramu</au><au>Raju, S.V.S. Rama Krishnam</au><au>Chandanan, Amit Kumar</au><au>Manasa, Dasari</au><au>Pandey, Rajeev</au><au>Dileep Kumar, Modugu</au><au>Vishwanath, Neerugatti Varipallay</au><au>Kashyap, Tanuja</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Design and Enactment Evaluation of Adaptive Artifacts Removal from EEG Signal Records</atitle><jtitle>Revue d'Intelligence Artificielle</jtitle><date>2024-08-23</date><risdate>2024</risdate><volume>38</volume><issue>4</issue><spage>1353</spage><epage>1359</epage><pages>1353-1359</pages><issn>0992-499X</issn><eissn>1958-5748</eissn><abstract>Various factors, such as electrical power lines, EOG or ECG interference, contribute to artefacts in Electroencephalogram (EEG) data, complicating EEG analysis and clinical interpretation. Developing specialized filters to mitigate these artefacts is crucial. Artefacts from eye movements and blinks have been extensively studied, prompting the development of an FLM optimization-based learning technique for a Neural Network (NN)-enhanced adaptive filtering model to address them. Initially, Firefly (FF) and LM adaptive filter algorithms analyze EEG data to determine optimal weights. These weights are then incorporated into the NN for adaptive filtering. The resulting technique effectively eliminates artefacts. Performance evaluation, based on Signal to Noise Ratio (SNR), Root Mean Square Error (RMSE), Mean Square Error (MSE), and computing time, compares the proposed method with conventional approaches. Results demonstrate a significant 92% improvement in SNR, indicating the efficiency of the proposed technique. This advancement holds promise for enhancing EEG data quality and facilitating more accurate clinical assessments.</abstract><cop>Edmonton</cop><pub>International Information and Engineering Technology Association (IIETA)</pub><doi>10.18280/ria.380429</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0992-499X
ispartof Revue d'Intelligence Artificielle, 2024-08, Vol.38 (4), p.1353-1359
issn 0992-499X
1958-5748
language eng ; fre
recordid cdi_proquest_journals_3097442609
source Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Adaptive algorithms
Adaptive filters
Algorithms
Computing time
Data analysis
Design factors
Electroencephalography
Eye movements
Mean square errors
Medical research
Methods
Neural networks
Noise control
Optimization
Performance evaluation
Physiology
Power lines
Root-mean-square errors
Sensors
Signal processing
Signal to noise ratio
Time series
title Design and Enactment Evaluation of Adaptive Artifacts Removal from EEG Signal Records
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T03%3A12%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Design%20and%20Enactment%20Evaluation%20of%20Adaptive%20Artifacts%20Removal%20from%20EEG%20Signal%20Records&rft.jtitle=Revue%20d'Intelligence%20Artificielle&rft.au=Kaliya%20Perumal,%20Ramu&rft.date=2024-08-23&rft.volume=38&rft.issue=4&rft.spage=1353&rft.epage=1359&rft.pages=1353-1359&rft.issn=0992-499X&rft.eissn=1958-5748&rft_id=info:doi/10.18280/ria.380429&rft_dat=%3Cproquest_cross%3E3097442609%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3097442609&rft_id=info:pmid/&rfr_iscdi=true