Design and Enactment Evaluation of Adaptive Artifacts Removal from EEG Signal Records
Various factors, such as electrical power lines, EOG or ECG interference, contribute to artefacts in Electroencephalogram (EEG) data, complicating EEG analysis and clinical interpretation. Developing specialized filters to mitigate these artefacts is crucial. Artefacts from eye movements and blinks...
Gespeichert in:
Veröffentlicht in: | Revue d'Intelligence Artificielle 2024-08, Vol.38 (4), p.1353-1359 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng ; fre |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1359 |
---|---|
container_issue | 4 |
container_start_page | 1353 |
container_title | Revue d'Intelligence Artificielle |
container_volume | 38 |
creator | Kaliya Perumal, Ramu Raju, S.V.S. Rama Krishnam Chandanan, Amit Kumar Manasa, Dasari Pandey, Rajeev Dileep Kumar, Modugu Vishwanath, Neerugatti Varipallay Kashyap, Tanuja |
description | Various factors, such as electrical power lines, EOG or ECG interference, contribute to artefacts in Electroencephalogram (EEG) data, complicating EEG analysis and clinical interpretation. Developing specialized filters to mitigate these artefacts is crucial. Artefacts from eye movements and blinks have been extensively studied, prompting the development of an FLM optimization-based learning technique for a Neural Network (NN)-enhanced adaptive filtering model to address them. Initially, Firefly (FF) and LM adaptive filter algorithms analyze EEG data to determine optimal weights. These weights are then incorporated into the NN for adaptive filtering. The resulting technique effectively eliminates artefacts. Performance evaluation, based on Signal to Noise Ratio (SNR), Root Mean Square Error (RMSE), Mean Square Error (MSE), and computing time, compares the proposed method with conventional approaches. Results demonstrate a significant 92% improvement in SNR, indicating the efficiency of the proposed technique. This advancement holds promise for enhancing EEG data quality and facilitating more accurate clinical assessments. |
doi_str_mv | 10.18280/ria.380429 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3097442609</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3097442609</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1019-2e9dcab9681493f5a6723b90b23f94c492727b080f03ce66bcd5fe87197f653</originalsourceid><addsrcrecordid>eNotkF1LwzAYhYMoOOau_AMBL6UzX03zXo5ZpzAQNgXvSpomElmbmXQD_73BenU48HA4PAjdUrKkiinyEL1eckUEgws0o1CqoqyEukQzAsAKAfBxjRYp-ZYIKRmXgszQ-6NN_nPAeuhwPWgz9nYYcX3Wh5MefRhwcHjV6ePozxav4uhdZhLe2T5kBrsYelzXG7zPI7nvrAmxSzfoyulDsov_nKP9U_22fi62r5uX9WpbGEooFMxCZ3QLUlEB3JVaVoy3QFrGHQgjgFWsaokijnBjpWxNVzqrKgqVkyWfo7tp9RjD98mmsfkKp5hvpIYTqIRgkkCm7ifKxJBStK45Rt_r-NNQ0vyJa7K4ZhLHfwGH2l-R</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3097442609</pqid></control><display><type>article</type><title>Design and Enactment Evaluation of Adaptive Artifacts Removal from EEG Signal Records</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Kaliya Perumal, Ramu ; Raju, S.V.S. Rama Krishnam ; Chandanan, Amit Kumar ; Manasa, Dasari ; Pandey, Rajeev ; Dileep Kumar, Modugu ; Vishwanath, Neerugatti Varipallay ; Kashyap, Tanuja</creator><creatorcontrib>Kaliya Perumal, Ramu ; Raju, S.V.S. Rama Krishnam ; Chandanan, Amit Kumar ; Manasa, Dasari ; Pandey, Rajeev ; Dileep Kumar, Modugu ; Vishwanath, Neerugatti Varipallay ; Kashyap, Tanuja</creatorcontrib><description>Various factors, such as electrical power lines, EOG or ECG interference, contribute to artefacts in Electroencephalogram (EEG) data, complicating EEG analysis and clinical interpretation. Developing specialized filters to mitigate these artefacts is crucial. Artefacts from eye movements and blinks have been extensively studied, prompting the development of an FLM optimization-based learning technique for a Neural Network (NN)-enhanced adaptive filtering model to address them. Initially, Firefly (FF) and LM adaptive filter algorithms analyze EEG data to determine optimal weights. These weights are then incorporated into the NN for adaptive filtering. The resulting technique effectively eliminates artefacts. Performance evaluation, based on Signal to Noise Ratio (SNR), Root Mean Square Error (RMSE), Mean Square Error (MSE), and computing time, compares the proposed method with conventional approaches. Results demonstrate a significant 92% improvement in SNR, indicating the efficiency of the proposed technique. This advancement holds promise for enhancing EEG data quality and facilitating more accurate clinical assessments.</description><identifier>ISSN: 0992-499X</identifier><identifier>EISSN: 1958-5748</identifier><identifier>DOI: 10.18280/ria.380429</identifier><language>eng ; fre</language><publisher>Edmonton: International Information and Engineering Technology Association (IIETA)</publisher><subject>Adaptive algorithms ; Adaptive filters ; Algorithms ; Computing time ; Data analysis ; Design factors ; Electroencephalography ; Eye movements ; Mean square errors ; Medical research ; Methods ; Neural networks ; Noise control ; Optimization ; Performance evaluation ; Physiology ; Power lines ; Root-mean-square errors ; Sensors ; Signal processing ; Signal to noise ratio ; Time series</subject><ispartof>Revue d'Intelligence Artificielle, 2024-08, Vol.38 (4), p.1353-1359</ispartof><rights>2024. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Kaliya Perumal, Ramu</creatorcontrib><creatorcontrib>Raju, S.V.S. Rama Krishnam</creatorcontrib><creatorcontrib>Chandanan, Amit Kumar</creatorcontrib><creatorcontrib>Manasa, Dasari</creatorcontrib><creatorcontrib>Pandey, Rajeev</creatorcontrib><creatorcontrib>Dileep Kumar, Modugu</creatorcontrib><creatorcontrib>Vishwanath, Neerugatti Varipallay</creatorcontrib><creatorcontrib>Kashyap, Tanuja</creatorcontrib><title>Design and Enactment Evaluation of Adaptive Artifacts Removal from EEG Signal Records</title><title>Revue d'Intelligence Artificielle</title><description>Various factors, such as electrical power lines, EOG or ECG interference, contribute to artefacts in Electroencephalogram (EEG) data, complicating EEG analysis and clinical interpretation. Developing specialized filters to mitigate these artefacts is crucial. Artefacts from eye movements and blinks have been extensively studied, prompting the development of an FLM optimization-based learning technique for a Neural Network (NN)-enhanced adaptive filtering model to address them. Initially, Firefly (FF) and LM adaptive filter algorithms analyze EEG data to determine optimal weights. These weights are then incorporated into the NN for adaptive filtering. The resulting technique effectively eliminates artefacts. Performance evaluation, based on Signal to Noise Ratio (SNR), Root Mean Square Error (RMSE), Mean Square Error (MSE), and computing time, compares the proposed method with conventional approaches. Results demonstrate a significant 92% improvement in SNR, indicating the efficiency of the proposed technique. This advancement holds promise for enhancing EEG data quality and facilitating more accurate clinical assessments.</description><subject>Adaptive algorithms</subject><subject>Adaptive filters</subject><subject>Algorithms</subject><subject>Computing time</subject><subject>Data analysis</subject><subject>Design factors</subject><subject>Electroencephalography</subject><subject>Eye movements</subject><subject>Mean square errors</subject><subject>Medical research</subject><subject>Methods</subject><subject>Neural networks</subject><subject>Noise control</subject><subject>Optimization</subject><subject>Performance evaluation</subject><subject>Physiology</subject><subject>Power lines</subject><subject>Root-mean-square errors</subject><subject>Sensors</subject><subject>Signal processing</subject><subject>Signal to noise ratio</subject><subject>Time series</subject><issn>0992-499X</issn><issn>1958-5748</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNotkF1LwzAYhYMoOOau_AMBL6UzX03zXo5ZpzAQNgXvSpomElmbmXQD_73BenU48HA4PAjdUrKkiinyEL1eckUEgws0o1CqoqyEukQzAsAKAfBxjRYp-ZYIKRmXgszQ-6NN_nPAeuhwPWgz9nYYcX3Wh5MefRhwcHjV6ePozxav4uhdZhLe2T5kBrsYelzXG7zPI7nvrAmxSzfoyulDsov_nKP9U_22fi62r5uX9WpbGEooFMxCZ3QLUlEB3JVaVoy3QFrGHQgjgFWsaokijnBjpWxNVzqrKgqVkyWfo7tp9RjD98mmsfkKp5hvpIYTqIRgkkCm7ifKxJBStK45Rt_r-NNQ0vyJa7K4ZhLHfwGH2l-R</recordid><startdate>20240823</startdate><enddate>20240823</enddate><creator>Kaliya Perumal, Ramu</creator><creator>Raju, S.V.S. Rama Krishnam</creator><creator>Chandanan, Amit Kumar</creator><creator>Manasa, Dasari</creator><creator>Pandey, Rajeev</creator><creator>Dileep Kumar, Modugu</creator><creator>Vishwanath, Neerugatti Varipallay</creator><creator>Kashyap, Tanuja</creator><general>International Information and Engineering Technology Association (IIETA)</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20240823</creationdate><title>Design and Enactment Evaluation of Adaptive Artifacts Removal from EEG Signal Records</title><author>Kaliya Perumal, Ramu ; Raju, S.V.S. Rama Krishnam ; Chandanan, Amit Kumar ; Manasa, Dasari ; Pandey, Rajeev ; Dileep Kumar, Modugu ; Vishwanath, Neerugatti Varipallay ; Kashyap, Tanuja</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1019-2e9dcab9681493f5a6723b90b23f94c492727b080f03ce66bcd5fe87197f653</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng ; fre</language><creationdate>2024</creationdate><topic>Adaptive algorithms</topic><topic>Adaptive filters</topic><topic>Algorithms</topic><topic>Computing time</topic><topic>Data analysis</topic><topic>Design factors</topic><topic>Electroencephalography</topic><topic>Eye movements</topic><topic>Mean square errors</topic><topic>Medical research</topic><topic>Methods</topic><topic>Neural networks</topic><topic>Noise control</topic><topic>Optimization</topic><topic>Performance evaluation</topic><topic>Physiology</topic><topic>Power lines</topic><topic>Root-mean-square errors</topic><topic>Sensors</topic><topic>Signal processing</topic><topic>Signal to noise ratio</topic><topic>Time series</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kaliya Perumal, Ramu</creatorcontrib><creatorcontrib>Raju, S.V.S. Rama Krishnam</creatorcontrib><creatorcontrib>Chandanan, Amit Kumar</creatorcontrib><creatorcontrib>Manasa, Dasari</creatorcontrib><creatorcontrib>Pandey, Rajeev</creatorcontrib><creatorcontrib>Dileep Kumar, Modugu</creatorcontrib><creatorcontrib>Vishwanath, Neerugatti Varipallay</creatorcontrib><creatorcontrib>Kashyap, Tanuja</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>Revue d'Intelligence Artificielle</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kaliya Perumal, Ramu</au><au>Raju, S.V.S. Rama Krishnam</au><au>Chandanan, Amit Kumar</au><au>Manasa, Dasari</au><au>Pandey, Rajeev</au><au>Dileep Kumar, Modugu</au><au>Vishwanath, Neerugatti Varipallay</au><au>Kashyap, Tanuja</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Design and Enactment Evaluation of Adaptive Artifacts Removal from EEG Signal Records</atitle><jtitle>Revue d'Intelligence Artificielle</jtitle><date>2024-08-23</date><risdate>2024</risdate><volume>38</volume><issue>4</issue><spage>1353</spage><epage>1359</epage><pages>1353-1359</pages><issn>0992-499X</issn><eissn>1958-5748</eissn><abstract>Various factors, such as electrical power lines, EOG or ECG interference, contribute to artefacts in Electroencephalogram (EEG) data, complicating EEG analysis and clinical interpretation. Developing specialized filters to mitigate these artefacts is crucial. Artefacts from eye movements and blinks have been extensively studied, prompting the development of an FLM optimization-based learning technique for a Neural Network (NN)-enhanced adaptive filtering model to address them. Initially, Firefly (FF) and LM adaptive filter algorithms analyze EEG data to determine optimal weights. These weights are then incorporated into the NN for adaptive filtering. The resulting technique effectively eliminates artefacts. Performance evaluation, based on Signal to Noise Ratio (SNR), Root Mean Square Error (RMSE), Mean Square Error (MSE), and computing time, compares the proposed method with conventional approaches. Results demonstrate a significant 92% improvement in SNR, indicating the efficiency of the proposed technique. This advancement holds promise for enhancing EEG data quality and facilitating more accurate clinical assessments.</abstract><cop>Edmonton</cop><pub>International Information and Engineering Technology Association (IIETA)</pub><doi>10.18280/ria.380429</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0992-499X |
ispartof | Revue d'Intelligence Artificielle, 2024-08, Vol.38 (4), p.1353-1359 |
issn | 0992-499X 1958-5748 |
language | eng ; fre |
recordid | cdi_proquest_journals_3097442609 |
source | Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | Adaptive algorithms Adaptive filters Algorithms Computing time Data analysis Design factors Electroencephalography Eye movements Mean square errors Medical research Methods Neural networks Noise control Optimization Performance evaluation Physiology Power lines Root-mean-square errors Sensors Signal processing Signal to noise ratio Time series |
title | Design and Enactment Evaluation of Adaptive Artifacts Removal from EEG Signal Records |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T03%3A12%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Design%20and%20Enactment%20Evaluation%20of%20Adaptive%20Artifacts%20Removal%20from%20EEG%20Signal%20Records&rft.jtitle=Revue%20d'Intelligence%20Artificielle&rft.au=Kaliya%20Perumal,%20Ramu&rft.date=2024-08-23&rft.volume=38&rft.issue=4&rft.spage=1353&rft.epage=1359&rft.pages=1353-1359&rft.issn=0992-499X&rft.eissn=1958-5748&rft_id=info:doi/10.18280/ria.380429&rft_dat=%3Cproquest_cross%3E3097442609%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3097442609&rft_id=info:pmid/&rfr_iscdi=true |