Textual Analysis for Public Sentiment Toward National Police Using CRISP-DM Framework

Nowadays, public opinion toward the National Police's (POLRI) image is deteriorating. With the explosive growth of social media in Indonesia, opinions on POLRI-related present-day issues on Twitter easily go viral, influencing sentiments among individuals regarding Indonesian law enforcement. N...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Revue d'Intelligence Artificielle 2024-02, Vol.38 (1), p.63-72
Hauptverfasser: Sudar, Latifa Z.S., Imbenay, Joash L., Budi, Indra, Ramadiah, Amanah, Putra, Prabu K., Santoso, Aris B.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 72
container_issue 1
container_start_page 63
container_title Revue d'Intelligence Artificielle
container_volume 38
creator Sudar, Latifa Z.S.
Imbenay, Joash L.
Budi, Indra
Ramadiah, Amanah
Putra, Prabu K.
Santoso, Aris B.
description Nowadays, public opinion toward the National Police's (POLRI) image is deteriorating. With the explosive growth of social media in Indonesia, opinions on POLRI-related present-day issues on Twitter easily go viral, influencing sentiments among individuals regarding Indonesian law enforcement. Negative sentiments, at some point, may lead to the undervaluation of law enforcement and the failure of the legal system. Therefore, sentiment analysis on Twitter is essential for gaining considerable insights into public views and attitudes on POLRI-related topics. This research is to determine the most effective approaches between Lexicon, a natural language processing method that relies on a corpus, and machine learning, which contains Naive-Bayes, Support Vector Machine (SVM), Random Forest, and Logistic Regression (LR). These approaches have differences in classification types: probability and linearity. To organize the research process, the Cross-Industry Standard Process for Data Mining (CRISP-DM) Framework, which comprises five data mining activities, was employed. The confusion matrix was used as the model performance measurement, with Naive-Bayes emerging as the best among all the tested models. Additionally, the subjects related to POLRI were developed using topic modeling, generating three topics: street police or police station, police acknowledgment in neighborhood activities, and the activity of contacting the police.
doi_str_mv 10.18280/ria.380107
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3097442565</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3097442565</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1717-96a751fa94528b712169dc224ed217d83ff8c1fba438f8bb850a3297607852f43</originalsourceid><addsrcrecordid>eNotkM1KAzEYRYMoWGpXvkDApUzN_8-yVKuFqsW24C5kZhKJTpuazFD79g7WzXcX3-FyOQBcYzTGiih0l4IdU4UwkmdggDVXBZdMnYMB0poUTOv3SzDKOZSICUGoYGgANmv303a2gZOdbY45ZOhjgsuubEIFV27Xhm1_4DoebKrhi21D7EG4jP3fwU0Ouw84fZuvlsX9M5wlu3WHmL6uwIW3TXaj_xyCzexhPX0qFq-P8-lkUVRYYlloYSXH3mrGiSolJljouiKEuZpgWSvqvaqwLy2jyquyVBxZSrQUSCpOPKNDcHPq3af43bncms_YpX5gNhRpyRjhgvfU7YmqUsw5OW_2KWxtOhqMzJ8606szJ3X0FxVwX6Y</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3097442565</pqid></control><display><type>article</type><title>Textual Analysis for Public Sentiment Toward National Police Using CRISP-DM Framework</title><source>EZB-FREE-00999 freely available EZB journals</source><creator>Sudar, Latifa Z.S. ; Imbenay, Joash L. ; Budi, Indra ; Ramadiah, Amanah ; Putra, Prabu K. ; Santoso, Aris B.</creator><creatorcontrib>Sudar, Latifa Z.S. ; Imbenay, Joash L. ; Budi, Indra ; Ramadiah, Amanah ; Putra, Prabu K. ; Santoso, Aris B.</creatorcontrib><description>Nowadays, public opinion toward the National Police's (POLRI) image is deteriorating. With the explosive growth of social media in Indonesia, opinions on POLRI-related present-day issues on Twitter easily go viral, influencing sentiments among individuals regarding Indonesian law enforcement. Negative sentiments, at some point, may lead to the undervaluation of law enforcement and the failure of the legal system. Therefore, sentiment analysis on Twitter is essential for gaining considerable insights into public views and attitudes on POLRI-related topics. This research is to determine the most effective approaches between Lexicon, a natural language processing method that relies on a corpus, and machine learning, which contains Naive-Bayes, Support Vector Machine (SVM), Random Forest, and Logistic Regression (LR). These approaches have differences in classification types: probability and linearity. To organize the research process, the Cross-Industry Standard Process for Data Mining (CRISP-DM) Framework, which comprises five data mining activities, was employed. The confusion matrix was used as the model performance measurement, with Naive-Bayes emerging as the best among all the tested models. Additionally, the subjects related to POLRI were developed using topic modeling, generating three topics: street police or police station, police acknowledgment in neighborhood activities, and the activity of contacting the police.</description><identifier>ISSN: 0992-499X</identifier><identifier>EISSN: 1958-5748</identifier><identifier>DOI: 10.18280/ria.380107</identifier><language>eng</language><publisher>Edmonton: International Information and Engineering Technology Association (IIETA)</publisher><subject>Collaboration ; Communication ; Data collection ; Data mining ; Law enforcement ; Legislation ; Machine learning ; Natural language processing ; Performance measurement ; Police ; Public opinion ; Sentiment analysis ; Social networks ; Statistical analysis ; Support vector machines</subject><ispartof>Revue d'Intelligence Artificielle, 2024-02, Vol.38 (1), p.63-72</ispartof><rights>2024. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Sudar, Latifa Z.S.</creatorcontrib><creatorcontrib>Imbenay, Joash L.</creatorcontrib><creatorcontrib>Budi, Indra</creatorcontrib><creatorcontrib>Ramadiah, Amanah</creatorcontrib><creatorcontrib>Putra, Prabu K.</creatorcontrib><creatorcontrib>Santoso, Aris B.</creatorcontrib><title>Textual Analysis for Public Sentiment Toward National Police Using CRISP-DM Framework</title><title>Revue d'Intelligence Artificielle</title><description>Nowadays, public opinion toward the National Police's (POLRI) image is deteriorating. With the explosive growth of social media in Indonesia, opinions on POLRI-related present-day issues on Twitter easily go viral, influencing sentiments among individuals regarding Indonesian law enforcement. Negative sentiments, at some point, may lead to the undervaluation of law enforcement and the failure of the legal system. Therefore, sentiment analysis on Twitter is essential for gaining considerable insights into public views and attitudes on POLRI-related topics. This research is to determine the most effective approaches between Lexicon, a natural language processing method that relies on a corpus, and machine learning, which contains Naive-Bayes, Support Vector Machine (SVM), Random Forest, and Logistic Regression (LR). These approaches have differences in classification types: probability and linearity. To organize the research process, the Cross-Industry Standard Process for Data Mining (CRISP-DM) Framework, which comprises five data mining activities, was employed. The confusion matrix was used as the model performance measurement, with Naive-Bayes emerging as the best among all the tested models. Additionally, the subjects related to POLRI were developed using topic modeling, generating three topics: street police or police station, police acknowledgment in neighborhood activities, and the activity of contacting the police.</description><subject>Collaboration</subject><subject>Communication</subject><subject>Data collection</subject><subject>Data mining</subject><subject>Law enforcement</subject><subject>Legislation</subject><subject>Machine learning</subject><subject>Natural language processing</subject><subject>Performance measurement</subject><subject>Police</subject><subject>Public opinion</subject><subject>Sentiment analysis</subject><subject>Social networks</subject><subject>Statistical analysis</subject><subject>Support vector machines</subject><issn>0992-499X</issn><issn>1958-5748</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNotkM1KAzEYRYMoWGpXvkDApUzN_8-yVKuFqsW24C5kZhKJTpuazFD79g7WzXcX3-FyOQBcYzTGiih0l4IdU4UwkmdggDVXBZdMnYMB0poUTOv3SzDKOZSICUGoYGgANmv303a2gZOdbY45ZOhjgsuubEIFV27Xhm1_4DoebKrhi21D7EG4jP3fwU0Ouw84fZuvlsX9M5wlu3WHmL6uwIW3TXaj_xyCzexhPX0qFq-P8-lkUVRYYlloYSXH3mrGiSolJljouiKEuZpgWSvqvaqwLy2jyquyVBxZSrQUSCpOPKNDcHPq3af43bncms_YpX5gNhRpyRjhgvfU7YmqUsw5OW_2KWxtOhqMzJ8606szJ3X0FxVwX6Y</recordid><startdate>20240201</startdate><enddate>20240201</enddate><creator>Sudar, Latifa Z.S.</creator><creator>Imbenay, Joash L.</creator><creator>Budi, Indra</creator><creator>Ramadiah, Amanah</creator><creator>Putra, Prabu K.</creator><creator>Santoso, Aris B.</creator><general>International Information and Engineering Technology Association (IIETA)</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20240201</creationdate><title>Textual Analysis for Public Sentiment Toward National Police Using CRISP-DM Framework</title><author>Sudar, Latifa Z.S. ; Imbenay, Joash L. ; Budi, Indra ; Ramadiah, Amanah ; Putra, Prabu K. ; Santoso, Aris B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1717-96a751fa94528b712169dc224ed217d83ff8c1fba438f8bb850a3297607852f43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Collaboration</topic><topic>Communication</topic><topic>Data collection</topic><topic>Data mining</topic><topic>Law enforcement</topic><topic>Legislation</topic><topic>Machine learning</topic><topic>Natural language processing</topic><topic>Performance measurement</topic><topic>Police</topic><topic>Public opinion</topic><topic>Sentiment analysis</topic><topic>Social networks</topic><topic>Statistical analysis</topic><topic>Support vector machines</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sudar, Latifa Z.S.</creatorcontrib><creatorcontrib>Imbenay, Joash L.</creatorcontrib><creatorcontrib>Budi, Indra</creatorcontrib><creatorcontrib>Ramadiah, Amanah</creatorcontrib><creatorcontrib>Putra, Prabu K.</creatorcontrib><creatorcontrib>Santoso, Aris B.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>Revue d'Intelligence Artificielle</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sudar, Latifa Z.S.</au><au>Imbenay, Joash L.</au><au>Budi, Indra</au><au>Ramadiah, Amanah</au><au>Putra, Prabu K.</au><au>Santoso, Aris B.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Textual Analysis for Public Sentiment Toward National Police Using CRISP-DM Framework</atitle><jtitle>Revue d'Intelligence Artificielle</jtitle><date>2024-02-01</date><risdate>2024</risdate><volume>38</volume><issue>1</issue><spage>63</spage><epage>72</epage><pages>63-72</pages><issn>0992-499X</issn><eissn>1958-5748</eissn><abstract>Nowadays, public opinion toward the National Police's (POLRI) image is deteriorating. With the explosive growth of social media in Indonesia, opinions on POLRI-related present-day issues on Twitter easily go viral, influencing sentiments among individuals regarding Indonesian law enforcement. Negative sentiments, at some point, may lead to the undervaluation of law enforcement and the failure of the legal system. Therefore, sentiment analysis on Twitter is essential for gaining considerable insights into public views and attitudes on POLRI-related topics. This research is to determine the most effective approaches between Lexicon, a natural language processing method that relies on a corpus, and machine learning, which contains Naive-Bayes, Support Vector Machine (SVM), Random Forest, and Logistic Regression (LR). These approaches have differences in classification types: probability and linearity. To organize the research process, the Cross-Industry Standard Process for Data Mining (CRISP-DM) Framework, which comprises five data mining activities, was employed. The confusion matrix was used as the model performance measurement, with Naive-Bayes emerging as the best among all the tested models. Additionally, the subjects related to POLRI were developed using topic modeling, generating three topics: street police or police station, police acknowledgment in neighborhood activities, and the activity of contacting the police.</abstract><cop>Edmonton</cop><pub>International Information and Engineering Technology Association (IIETA)</pub><doi>10.18280/ria.380107</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0992-499X
ispartof Revue d'Intelligence Artificielle, 2024-02, Vol.38 (1), p.63-72
issn 0992-499X
1958-5748
language eng
recordid cdi_proquest_journals_3097442565
source EZB-FREE-00999 freely available EZB journals
subjects Collaboration
Communication
Data collection
Data mining
Law enforcement
Legislation
Machine learning
Natural language processing
Performance measurement
Police
Public opinion
Sentiment analysis
Social networks
Statistical analysis
Support vector machines
title Textual Analysis for Public Sentiment Toward National Police Using CRISP-DM Framework
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T09%3A18%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Textual%20Analysis%20for%20Public%20Sentiment%20Toward%20National%20Police%20Using%20CRISP-DM%20Framework&rft.jtitle=Revue%20d'Intelligence%20Artificielle&rft.au=Sudar,%20Latifa%20Z.S.&rft.date=2024-02-01&rft.volume=38&rft.issue=1&rft.spage=63&rft.epage=72&rft.pages=63-72&rft.issn=0992-499X&rft.eissn=1958-5748&rft_id=info:doi/10.18280/ria.380107&rft_dat=%3Cproquest_cross%3E3097442565%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3097442565&rft_id=info:pmid/&rfr_iscdi=true