Measuring Agricultural Area Using YOLO Object Detection and ArUco Markers

This paper discusses the use of drones in image acquisition of agricultural land to detect the presence of disease and calculate the area of infected agriculture. Calculation of the area of infected and healthy areas will be calculated by combining the You Only Look Once (Yolo) object detection algo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Ingénierie des systèmes d'Information 2024-02, Vol.29 (1), p.95-106
Hauptverfasser: Masykur, Fauzan, Adi, Kusworo, Nurhayati, Oky Dwi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 106
container_issue 1
container_start_page 95
container_title Ingénierie des systèmes d'Information
container_volume 29
creator Masykur, Fauzan
Adi, Kusworo
Nurhayati, Oky Dwi
description This paper discusses the use of drones in image acquisition of agricultural land to detect the presence of disease and calculate the area of infected agriculture. Calculation of the area of infected and healthy areas will be calculated by combining the You Only Look Once (Yolo) object detection algorithm version 4 with the ArUco Marker reference image. The image resulting from the detection from the Yolo v4 algorithm will be used as a reference to be referenced using a reference image in the form of an AruCo Marker to convert it to area units to determine the area of the infected area and calculate the ratio between the area of the infected area and the area of the healthy area. The coordinate points at each corner are used as the first stage in converting pixels into area units. Measuring the infected area is necessary to localize the infection so that it does not spread to healthy plant areas. Apart from that, to anticipate the spread of infection which could result in crop failure. Evaluation of the calculation of the area of the detection area with the actual area resulted in an accuracy of 97.05%.
doi_str_mv 10.18280/isi.290111
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3097421090</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3097421090</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1711-b53de57939a0af589b244e94873230b02b5d6c679390b7b2df737f1616f5055a3</originalsourceid><addsrcrecordid>eNotkEFLwzAYhoMoWOZO_oGAR-n8vqRJmuOYOgcbvbiDp5C06Wid7Uzag__ezvldXvh4eF94CLlHWGDOcnhqYrNgGhDxiiQMUaYKmbgmCUrOU-SIt2QeYwvTcY4yg4Rsdt7GMTTdgS4PoSnH4zAGe6TL4C3dx_P_o9gWtHCtLwf67Icpmr6jtqsmaF_2dGfDpw_xjtzU9hj9_D9nZP_68r56S7fFerNabtMSFWLqBK-8UJprC7YWuXYsy7zOcsUZBwfMiUqW8gyAU45VteKqRomyFiCE5TPycOk9hf579HEwbT-Gbpo0HLTKGIKGiXq8UGXoYwy-NqfQfNnwYxDMny4z6TIXXfwXFGFaXw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3097421090</pqid></control><display><type>article</type><title>Measuring Agricultural Area Using YOLO Object Detection and ArUco Markers</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Masykur, Fauzan ; Adi, Kusworo ; Nurhayati, Oky Dwi</creator><creatorcontrib>Masykur, Fauzan ; Adi, Kusworo ; Nurhayati, Oky Dwi</creatorcontrib><description>This paper discusses the use of drones in image acquisition of agricultural land to detect the presence of disease and calculate the area of infected agriculture. Calculation of the area of infected and healthy areas will be calculated by combining the You Only Look Once (Yolo) object detection algorithm version 4 with the ArUco Marker reference image. The image resulting from the detection from the Yolo v4 algorithm will be used as a reference to be referenced using a reference image in the form of an AruCo Marker to convert it to area units to determine the area of the infected area and calculate the ratio between the area of the infected area and the area of the healthy area. The coordinate points at each corner are used as the first stage in converting pixels into area units. Measuring the infected area is necessary to localize the infection so that it does not spread to healthy plant areas. Apart from that, to anticipate the spread of infection which could result in crop failure. Evaluation of the calculation of the area of the detection area with the actual area resulted in an accuracy of 97.05%.</description><identifier>ISSN: 1633-1311</identifier><identifier>EISSN: 2116-7125</identifier><identifier>DOI: 10.18280/isi.290111</identifier><language>eng</language><publisher>Edmonton: International Information and Engineering Technology Association (IIETA)</publisher><subject>Accuracy ; Agriculture ; Algorithms ; Artificial intelligence ; Cameras ; Cracks ; Crop diseases ; Datasets ; Drones ; Image acquisition ; Object recognition ; Plant diseases ; Plant growth ; Remote sensing ; Rice ; Unmanned aerial vehicles</subject><ispartof>Ingénierie des systèmes d'Information, 2024-02, Vol.29 (1), p.95-106</ispartof><rights>2024. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Masykur, Fauzan</creatorcontrib><creatorcontrib>Adi, Kusworo</creatorcontrib><creatorcontrib>Nurhayati, Oky Dwi</creatorcontrib><title>Measuring Agricultural Area Using YOLO Object Detection and ArUco Markers</title><title>Ingénierie des systèmes d'Information</title><description>This paper discusses the use of drones in image acquisition of agricultural land to detect the presence of disease and calculate the area of infected agriculture. Calculation of the area of infected and healthy areas will be calculated by combining the You Only Look Once (Yolo) object detection algorithm version 4 with the ArUco Marker reference image. The image resulting from the detection from the Yolo v4 algorithm will be used as a reference to be referenced using a reference image in the form of an AruCo Marker to convert it to area units to determine the area of the infected area and calculate the ratio between the area of the infected area and the area of the healthy area. The coordinate points at each corner are used as the first stage in converting pixels into area units. Measuring the infected area is necessary to localize the infection so that it does not spread to healthy plant areas. Apart from that, to anticipate the spread of infection which could result in crop failure. Evaluation of the calculation of the area of the detection area with the actual area resulted in an accuracy of 97.05%.</description><subject>Accuracy</subject><subject>Agriculture</subject><subject>Algorithms</subject><subject>Artificial intelligence</subject><subject>Cameras</subject><subject>Cracks</subject><subject>Crop diseases</subject><subject>Datasets</subject><subject>Drones</subject><subject>Image acquisition</subject><subject>Object recognition</subject><subject>Plant diseases</subject><subject>Plant growth</subject><subject>Remote sensing</subject><subject>Rice</subject><subject>Unmanned aerial vehicles</subject><issn>1633-1311</issn><issn>2116-7125</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNotkEFLwzAYhoMoWOZO_oGAR-n8vqRJmuOYOgcbvbiDp5C06Wid7Uzag__ezvldXvh4eF94CLlHWGDOcnhqYrNgGhDxiiQMUaYKmbgmCUrOU-SIt2QeYwvTcY4yg4Rsdt7GMTTdgS4PoSnH4zAGe6TL4C3dx_P_o9gWtHCtLwf67Icpmr6jtqsmaF_2dGfDpw_xjtzU9hj9_D9nZP_68r56S7fFerNabtMSFWLqBK-8UJprC7YWuXYsy7zOcsUZBwfMiUqW8gyAU45VteKqRomyFiCE5TPycOk9hf579HEwbT-Gbpo0HLTKGIKGiXq8UGXoYwy-NqfQfNnwYxDMny4z6TIXXfwXFGFaXw</recordid><startdate>20240201</startdate><enddate>20240201</enddate><creator>Masykur, Fauzan</creator><creator>Adi, Kusworo</creator><creator>Nurhayati, Oky Dwi</creator><general>International Information and Engineering Technology Association (IIETA)</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PQBIZ</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20240201</creationdate><title>Measuring Agricultural Area Using YOLO Object Detection and ArUco Markers</title><author>Masykur, Fauzan ; Adi, Kusworo ; Nurhayati, Oky Dwi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1711-b53de57939a0af589b244e94873230b02b5d6c679390b7b2df737f1616f5055a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Accuracy</topic><topic>Agriculture</topic><topic>Algorithms</topic><topic>Artificial intelligence</topic><topic>Cameras</topic><topic>Cracks</topic><topic>Crop diseases</topic><topic>Datasets</topic><topic>Drones</topic><topic>Image acquisition</topic><topic>Object recognition</topic><topic>Plant diseases</topic><topic>Plant growth</topic><topic>Remote sensing</topic><topic>Rice</topic><topic>Unmanned aerial vehicles</topic><toplevel>online_resources</toplevel><creatorcontrib>Masykur, Fauzan</creatorcontrib><creatorcontrib>Adi, Kusworo</creatorcontrib><creatorcontrib>Nurhayati, Oky Dwi</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>One Business (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>Ingénierie des systèmes d'Information</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Masykur, Fauzan</au><au>Adi, Kusworo</au><au>Nurhayati, Oky Dwi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Measuring Agricultural Area Using YOLO Object Detection and ArUco Markers</atitle><jtitle>Ingénierie des systèmes d'Information</jtitle><date>2024-02-01</date><risdate>2024</risdate><volume>29</volume><issue>1</issue><spage>95</spage><epage>106</epage><pages>95-106</pages><issn>1633-1311</issn><eissn>2116-7125</eissn><abstract>This paper discusses the use of drones in image acquisition of agricultural land to detect the presence of disease and calculate the area of infected agriculture. Calculation of the area of infected and healthy areas will be calculated by combining the You Only Look Once (Yolo) object detection algorithm version 4 with the ArUco Marker reference image. The image resulting from the detection from the Yolo v4 algorithm will be used as a reference to be referenced using a reference image in the form of an AruCo Marker to convert it to area units to determine the area of the infected area and calculate the ratio between the area of the infected area and the area of the healthy area. The coordinate points at each corner are used as the first stage in converting pixels into area units. Measuring the infected area is necessary to localize the infection so that it does not spread to healthy plant areas. Apart from that, to anticipate the spread of infection which could result in crop failure. Evaluation of the calculation of the area of the detection area with the actual area resulted in an accuracy of 97.05%.</abstract><cop>Edmonton</cop><pub>International Information and Engineering Technology Association (IIETA)</pub><doi>10.18280/isi.290111</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1633-1311
ispartof Ingénierie des systèmes d'Information, 2024-02, Vol.29 (1), p.95-106
issn 1633-1311
2116-7125
language eng
recordid cdi_proquest_journals_3097421090
source Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Accuracy
Agriculture
Algorithms
Artificial intelligence
Cameras
Cracks
Crop diseases
Datasets
Drones
Image acquisition
Object recognition
Plant diseases
Plant growth
Remote sensing
Rice
Unmanned aerial vehicles
title Measuring Agricultural Area Using YOLO Object Detection and ArUco Markers
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T15%3A15%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Measuring%20Agricultural%20Area%20Using%20YOLO%20Object%20Detection%20and%20ArUco%20Markers&rft.jtitle=Ing%C3%A9nierie%20des%20syst%C3%A8mes%20d'Information&rft.au=Masykur,%20Fauzan&rft.date=2024-02-01&rft.volume=29&rft.issue=1&rft.spage=95&rft.epage=106&rft.pages=95-106&rft.issn=1633-1311&rft.eissn=2116-7125&rft_id=info:doi/10.18280/isi.290111&rft_dat=%3Cproquest_cross%3E3097421090%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3097421090&rft_id=info:pmid/&rfr_iscdi=true