Critical Point Extraction from Multivariate Functional Approximation

Advances in high-performance computing require new ways to represent large-scale scientific data to support data storage, data transfers, and data analysis within scientific workflows. Multivariate functional approximation (MFA) has recently emerged as a new continuous meshless representation that a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2024-08
Hauptverfasser: Ma, Guanqun, Lenz, David, Peterka, Tom, Guo, Hanqi, Wang, Bei
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Ma, Guanqun
Lenz, David
Peterka, Tom
Guo, Hanqi
Wang, Bei
description Advances in high-performance computing require new ways to represent large-scale scientific data to support data storage, data transfers, and data analysis within scientific workflows. Multivariate functional approximation (MFA) has recently emerged as a new continuous meshless representation that approximates raw discrete data with a set of piecewise smooth functions. An MFA model of data thus offers a compact representation and supports high-order evaluation of values and derivatives anywhere in the domain. In this paper, we present CPE-MFA, the first critical point extraction framework designed for MFA models of large-scale, high-dimensional data. CPE-MFA extracts critical points directly from an MFA model without the need for discretization or resampling. This is the first step toward enabling continuous implicit models such as MFA to support topological data analysis at scale.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_3097274436</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3097274436</sourcerecordid><originalsourceid>FETCH-proquest_journals_30972744363</originalsourceid><addsrcrecordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mRwcS7KLMlMTsxRCMjPzCtRcK0oKUpMLsnMz1NIK8rPVfAtzSnJLEssykwsSVVwK80DSwFVOxYUFOVXZOYmgvg8DKxpiTnFqbxQmptB2c01xNlDF6imsDS1uCQ-K7-0CKitON7YwNLcyNzExNjMmDhVAJXvO2I</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3097274436</pqid></control><display><type>article</type><title>Critical Point Extraction from Multivariate Functional Approximation</title><source>Free E- Journals</source><creator>Ma, Guanqun ; Lenz, David ; Peterka, Tom ; Guo, Hanqi ; Wang, Bei</creator><creatorcontrib>Ma, Guanqun ; Lenz, David ; Peterka, Tom ; Guo, Hanqi ; Wang, Bei</creatorcontrib><description>Advances in high-performance computing require new ways to represent large-scale scientific data to support data storage, data transfers, and data analysis within scientific workflows. Multivariate functional approximation (MFA) has recently emerged as a new continuous meshless representation that approximates raw discrete data with a set of piecewise smooth functions. An MFA model of data thus offers a compact representation and supports high-order evaluation of values and derivatives anywhere in the domain. In this paper, we present CPE-MFA, the first critical point extraction framework designed for MFA models of large-scale, high-dimensional data. CPE-MFA extracts critical points directly from an MFA model without the need for discretization or resampling. This is the first step toward enabling continuous implicit models such as MFA to support topological data analysis at scale.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Approximation ; Continuity (mathematics) ; Critical point ; Data analysis ; Data storage ; Dimensional analysis ; Functionals ; Multivariate analysis ; Representations ; Resampling</subject><ispartof>arXiv.org, 2024-08</ispartof><rights>2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>776,780</link.rule.ids></links><search><creatorcontrib>Ma, Guanqun</creatorcontrib><creatorcontrib>Lenz, David</creatorcontrib><creatorcontrib>Peterka, Tom</creatorcontrib><creatorcontrib>Guo, Hanqi</creatorcontrib><creatorcontrib>Wang, Bei</creatorcontrib><title>Critical Point Extraction from Multivariate Functional Approximation</title><title>arXiv.org</title><description>Advances in high-performance computing require new ways to represent large-scale scientific data to support data storage, data transfers, and data analysis within scientific workflows. Multivariate functional approximation (MFA) has recently emerged as a new continuous meshless representation that approximates raw discrete data with a set of piecewise smooth functions. An MFA model of data thus offers a compact representation and supports high-order evaluation of values and derivatives anywhere in the domain. In this paper, we present CPE-MFA, the first critical point extraction framework designed for MFA models of large-scale, high-dimensional data. CPE-MFA extracts critical points directly from an MFA model without the need for discretization or resampling. This is the first step toward enabling continuous implicit models such as MFA to support topological data analysis at scale.</description><subject>Approximation</subject><subject>Continuity (mathematics)</subject><subject>Critical point</subject><subject>Data analysis</subject><subject>Data storage</subject><subject>Dimensional analysis</subject><subject>Functionals</subject><subject>Multivariate analysis</subject><subject>Representations</subject><subject>Resampling</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mRwcS7KLMlMTsxRCMjPzCtRcK0oKUpMLsnMz1NIK8rPVfAtzSnJLEssykwsSVVwK80DSwFVOxYUFOVXZOYmgvg8DKxpiTnFqbxQmptB2c01xNlDF6imsDS1uCQ-K7-0CKitON7YwNLcyNzExNjMmDhVAJXvO2I</recordid><startdate>20240823</startdate><enddate>20240823</enddate><creator>Ma, Guanqun</creator><creator>Lenz, David</creator><creator>Peterka, Tom</creator><creator>Guo, Hanqi</creator><creator>Wang, Bei</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20240823</creationdate><title>Critical Point Extraction from Multivariate Functional Approximation</title><author>Ma, Guanqun ; Lenz, David ; Peterka, Tom ; Guo, Hanqi ; Wang, Bei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_30972744363</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Approximation</topic><topic>Continuity (mathematics)</topic><topic>Critical point</topic><topic>Data analysis</topic><topic>Data storage</topic><topic>Dimensional analysis</topic><topic>Functionals</topic><topic>Multivariate analysis</topic><topic>Representations</topic><topic>Resampling</topic><toplevel>online_resources</toplevel><creatorcontrib>Ma, Guanqun</creatorcontrib><creatorcontrib>Lenz, David</creatorcontrib><creatorcontrib>Peterka, Tom</creatorcontrib><creatorcontrib>Guo, Hanqi</creatorcontrib><creatorcontrib>Wang, Bei</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ma, Guanqun</au><au>Lenz, David</au><au>Peterka, Tom</au><au>Guo, Hanqi</au><au>Wang, Bei</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Critical Point Extraction from Multivariate Functional Approximation</atitle><jtitle>arXiv.org</jtitle><date>2024-08-23</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>Advances in high-performance computing require new ways to represent large-scale scientific data to support data storage, data transfers, and data analysis within scientific workflows. Multivariate functional approximation (MFA) has recently emerged as a new continuous meshless representation that approximates raw discrete data with a set of piecewise smooth functions. An MFA model of data thus offers a compact representation and supports high-order evaluation of values and derivatives anywhere in the domain. In this paper, we present CPE-MFA, the first critical point extraction framework designed for MFA models of large-scale, high-dimensional data. CPE-MFA extracts critical points directly from an MFA model without the need for discretization or resampling. This is the first step toward enabling continuous implicit models such as MFA to support topological data analysis at scale.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2024-08
issn 2331-8422
language eng
recordid cdi_proquest_journals_3097274436
source Free E- Journals
subjects Approximation
Continuity (mathematics)
Critical point
Data analysis
Data storage
Dimensional analysis
Functionals
Multivariate analysis
Representations
Resampling
title Critical Point Extraction from Multivariate Functional Approximation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T18%3A29%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Critical%20Point%20Extraction%20from%20Multivariate%20Functional%20Approximation&rft.jtitle=arXiv.org&rft.au=Ma,%20Guanqun&rft.date=2024-08-23&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E3097274436%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3097274436&rft_id=info:pmid/&rfr_iscdi=true