High-topological-number skyrmions with tunable diameters in two-dimensional frustrated J1−J2 magnets
Skyrmions are intriguing quasiparticles in the field of condensed matter due to their unique physics and promising applications in spintronic devices. However, despite abundant studies on skyrmions with a topological charge of Q = 1, there have been only few on those with higher Q (≥2) due to their...
Gespeichert in:
Veröffentlicht in: | Applied physics letters 2024-08, Vol.125 (9) |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 9 |
container_start_page | |
container_title | Applied physics letters |
container_volume | 125 |
creator | Hu, Hongliang Shen, Zhong Chen, Zheng Wu, Xiaoping Zhong, Tingting Song, Changsheng |
description | Skyrmions are intriguing quasiparticles in the field of condensed matter due to their unique physics and promising applications in spintronic devices. However, despite abundant studies on skyrmions with a topological charge of Q = 1, there have been only few on those with higher Q (≥2) due to their intrinsic instability in Dzyaloshinskii–Moriya interaction (DMI) systems. In this work, applying the frustrated J1−J2 Heisenberg spin model, we investigate the stability of high-Q skyrmions and the manipulation of their diameters in a hexagonal close-packed lattice through atomistic simulations and first-principles calculations. First, three spin textures, called spiral, skyrmion, and ferromagnetic, are identified by varying (J1, J2), and it is shown that skyrmions with higher Q can occupy a wider range of (J1, J2) values. The diameter of the skyrmions can then be finely tuned using the frustration strength (|J2/J1|), the single-ion anisotropy (K), and an external magnetic field (B). As B increases, the high-Q skyrmions split into skyrmions with smaller Q and can be annihilated by a larger B. Furthermore, we find that the CoCl2 monolayer satisfies the criteria for a frustrated J1−J2 magnet, and its magnetic behaviors align with the aforementioned conclusions. In addition, high-Q skyrmions are identified in the CoCl2 monolayer, and the corresponding energy barriers for skyrmion collapse are investigated. Our findings pave the way for prospective spintronic applications based on high-Q and nanoscale skyrmionic textures. |
doi_str_mv | 10.1063/5.0217683 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3097234684</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3097234684</sourcerecordid><originalsourceid>FETCH-LOGICAL-c147t-e5445f1f2be0541c722bf1619ae1b1afd1f170a45c294e19ae94554d871cb3463</originalsourceid><addsrcrecordid>eNotkL1OwzAcxC0EEqUw8AaWmBhc_PdHnIyoAkpViQXmyEns1iWJi-2o6hsw84g8CUHtdLrTT6fTIXQLdAY04w9yRhmoLOdnaAJUKcIB8nM0oZRykhUSLtFVjNvRSsb5BNmFW29I8jvf-rWrdUv6oatMwPHzEDrn-4j3Lm1wGnpdtQY3TncmmRCx63Hae9K4zvRxBHWLbRhiCjqZBi_h9_tnyXCn171J8RpdWN1Gc3PSKfp4fnqfL8jq7eV1_rgiNQiViJFCSAuWVYZKAbVirLKQQaENVKBtAxYU1ULWrBDmPy6ElKLJFdQVFxmfortj7y74r8HEVG79EMZtseS0UGxkcjFS90eqDj7GYGy5C67T4VACLf9vLGV5upH_Aci1Zfo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3097234684</pqid></control><display><type>article</type><title>High-topological-number skyrmions with tunable diameters in two-dimensional frustrated J1−J2 magnets</title><source>AIP Journals Complete</source><creator>Hu, Hongliang ; Shen, Zhong ; Chen, Zheng ; Wu, Xiaoping ; Zhong, Tingting ; Song, Changsheng</creator><creatorcontrib>Hu, Hongliang ; Shen, Zhong ; Chen, Zheng ; Wu, Xiaoping ; Zhong, Tingting ; Song, Changsheng</creatorcontrib><description>Skyrmions are intriguing quasiparticles in the field of condensed matter due to their unique physics and promising applications in spintronic devices. However, despite abundant studies on skyrmions with a topological charge of Q = 1, there have been only few on those with higher Q (≥2) due to their intrinsic instability in Dzyaloshinskii–Moriya interaction (DMI) systems. In this work, applying the frustrated J1−J2 Heisenberg spin model, we investigate the stability of high-Q skyrmions and the manipulation of their diameters in a hexagonal close-packed lattice through atomistic simulations and first-principles calculations. First, three spin textures, called spiral, skyrmion, and ferromagnetic, are identified by varying (J1, J2), and it is shown that skyrmions with higher Q can occupy a wider range of (J1, J2) values. The diameter of the skyrmions can then be finely tuned using the frustration strength (|J2/J1|), the single-ion anisotropy (K), and an external magnetic field (B). As B increases, the high-Q skyrmions split into skyrmions with smaller Q and can be annihilated by a larger B. Furthermore, we find that the CoCl2 monolayer satisfies the criteria for a frustrated J1−J2 magnet, and its magnetic behaviors align with the aforementioned conclusions. In addition, high-Q skyrmions are identified in the CoCl2 monolayer, and the corresponding energy barriers for skyrmion collapse are investigated. Our findings pave the way for prospective spintronic applications based on high-Q and nanoscale skyrmionic textures.</description><identifier>ISSN: 0003-6951</identifier><identifier>EISSN: 1077-3118</identifier><identifier>DOI: 10.1063/5.0217683</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Anisotropy ; Close packed lattices ; Diameters ; Elementary excitations ; Ferromagnetism ; First principles ; Hexagonal lattice ; Hypothetical particles ; Magnets ; Monolayers ; Particle theory ; Topology</subject><ispartof>Applied physics letters, 2024-08, Vol.125 (9)</ispartof><rights>2024 Author(s). Published under an exclusive license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c147t-e5445f1f2be0541c722bf1619ae1b1afd1f170a45c294e19ae94554d871cb3463</cites><orcidid>0009-0001-1008-7344 ; 0009-0007-8687-7258 ; 0009-0006-4001-9517 ; 0000-0002-6662-1489 ; 0009-0006-0354-9914</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Hu, Hongliang</creatorcontrib><creatorcontrib>Shen, Zhong</creatorcontrib><creatorcontrib>Chen, Zheng</creatorcontrib><creatorcontrib>Wu, Xiaoping</creatorcontrib><creatorcontrib>Zhong, Tingting</creatorcontrib><creatorcontrib>Song, Changsheng</creatorcontrib><title>High-topological-number skyrmions with tunable diameters in two-dimensional frustrated J1−J2 magnets</title><title>Applied physics letters</title><description>Skyrmions are intriguing quasiparticles in the field of condensed matter due to their unique physics and promising applications in spintronic devices. However, despite abundant studies on skyrmions with a topological charge of Q = 1, there have been only few on those with higher Q (≥2) due to their intrinsic instability in Dzyaloshinskii–Moriya interaction (DMI) systems. In this work, applying the frustrated J1−J2 Heisenberg spin model, we investigate the stability of high-Q skyrmions and the manipulation of their diameters in a hexagonal close-packed lattice through atomistic simulations and first-principles calculations. First, three spin textures, called spiral, skyrmion, and ferromagnetic, are identified by varying (J1, J2), and it is shown that skyrmions with higher Q can occupy a wider range of (J1, J2) values. The diameter of the skyrmions can then be finely tuned using the frustration strength (|J2/J1|), the single-ion anisotropy (K), and an external magnetic field (B). As B increases, the high-Q skyrmions split into skyrmions with smaller Q and can be annihilated by a larger B. Furthermore, we find that the CoCl2 monolayer satisfies the criteria for a frustrated J1−J2 magnet, and its magnetic behaviors align with the aforementioned conclusions. In addition, high-Q skyrmions are identified in the CoCl2 monolayer, and the corresponding energy barriers for skyrmion collapse are investigated. Our findings pave the way for prospective spintronic applications based on high-Q and nanoscale skyrmionic textures.</description><subject>Anisotropy</subject><subject>Close packed lattices</subject><subject>Diameters</subject><subject>Elementary excitations</subject><subject>Ferromagnetism</subject><subject>First principles</subject><subject>Hexagonal lattice</subject><subject>Hypothetical particles</subject><subject>Magnets</subject><subject>Monolayers</subject><subject>Particle theory</subject><subject>Topology</subject><issn>0003-6951</issn><issn>1077-3118</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNotkL1OwzAcxC0EEqUw8AaWmBhc_PdHnIyoAkpViQXmyEns1iWJi-2o6hsw84g8CUHtdLrTT6fTIXQLdAY04w9yRhmoLOdnaAJUKcIB8nM0oZRykhUSLtFVjNvRSsb5BNmFW29I8jvf-rWrdUv6oatMwPHzEDrn-4j3Lm1wGnpdtQY3TncmmRCx63Hae9K4zvRxBHWLbRhiCjqZBi_h9_tnyXCn171J8RpdWN1Gc3PSKfp4fnqfL8jq7eV1_rgiNQiViJFCSAuWVYZKAbVirLKQQaENVKBtAxYU1ULWrBDmPy6ElKLJFdQVFxmfortj7y74r8HEVG79EMZtseS0UGxkcjFS90eqDj7GYGy5C67T4VACLf9vLGV5upH_Aci1Zfo</recordid><startdate>20240826</startdate><enddate>20240826</enddate><creator>Hu, Hongliang</creator><creator>Shen, Zhong</creator><creator>Chen, Zheng</creator><creator>Wu, Xiaoping</creator><creator>Zhong, Tingting</creator><creator>Song, Changsheng</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0009-0001-1008-7344</orcidid><orcidid>https://orcid.org/0009-0007-8687-7258</orcidid><orcidid>https://orcid.org/0009-0006-4001-9517</orcidid><orcidid>https://orcid.org/0000-0002-6662-1489</orcidid><orcidid>https://orcid.org/0009-0006-0354-9914</orcidid></search><sort><creationdate>20240826</creationdate><title>High-topological-number skyrmions with tunable diameters in two-dimensional frustrated J1−J2 magnets</title><author>Hu, Hongliang ; Shen, Zhong ; Chen, Zheng ; Wu, Xiaoping ; Zhong, Tingting ; Song, Changsheng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c147t-e5445f1f2be0541c722bf1619ae1b1afd1f170a45c294e19ae94554d871cb3463</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Anisotropy</topic><topic>Close packed lattices</topic><topic>Diameters</topic><topic>Elementary excitations</topic><topic>Ferromagnetism</topic><topic>First principles</topic><topic>Hexagonal lattice</topic><topic>Hypothetical particles</topic><topic>Magnets</topic><topic>Monolayers</topic><topic>Particle theory</topic><topic>Topology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hu, Hongliang</creatorcontrib><creatorcontrib>Shen, Zhong</creatorcontrib><creatorcontrib>Chen, Zheng</creatorcontrib><creatorcontrib>Wu, Xiaoping</creatorcontrib><creatorcontrib>Zhong, Tingting</creatorcontrib><creatorcontrib>Song, Changsheng</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Applied physics letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hu, Hongliang</au><au>Shen, Zhong</au><au>Chen, Zheng</au><au>Wu, Xiaoping</au><au>Zhong, Tingting</au><au>Song, Changsheng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>High-topological-number skyrmions with tunable diameters in two-dimensional frustrated J1−J2 magnets</atitle><jtitle>Applied physics letters</jtitle><date>2024-08-26</date><risdate>2024</risdate><volume>125</volume><issue>9</issue><issn>0003-6951</issn><eissn>1077-3118</eissn><abstract>Skyrmions are intriguing quasiparticles in the field of condensed matter due to their unique physics and promising applications in spintronic devices. However, despite abundant studies on skyrmions with a topological charge of Q = 1, there have been only few on those with higher Q (≥2) due to their intrinsic instability in Dzyaloshinskii–Moriya interaction (DMI) systems. In this work, applying the frustrated J1−J2 Heisenberg spin model, we investigate the stability of high-Q skyrmions and the manipulation of their diameters in a hexagonal close-packed lattice through atomistic simulations and first-principles calculations. First, three spin textures, called spiral, skyrmion, and ferromagnetic, are identified by varying (J1, J2), and it is shown that skyrmions with higher Q can occupy a wider range of (J1, J2) values. The diameter of the skyrmions can then be finely tuned using the frustration strength (|J2/J1|), the single-ion anisotropy (K), and an external magnetic field (B). As B increases, the high-Q skyrmions split into skyrmions with smaller Q and can be annihilated by a larger B. Furthermore, we find that the CoCl2 monolayer satisfies the criteria for a frustrated J1−J2 magnet, and its magnetic behaviors align with the aforementioned conclusions. In addition, high-Q skyrmions are identified in the CoCl2 monolayer, and the corresponding energy barriers for skyrmion collapse are investigated. Our findings pave the way for prospective spintronic applications based on high-Q and nanoscale skyrmionic textures.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0217683</doi><orcidid>https://orcid.org/0009-0001-1008-7344</orcidid><orcidid>https://orcid.org/0009-0007-8687-7258</orcidid><orcidid>https://orcid.org/0009-0006-4001-9517</orcidid><orcidid>https://orcid.org/0000-0002-6662-1489</orcidid><orcidid>https://orcid.org/0009-0006-0354-9914</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0003-6951 |
ispartof | Applied physics letters, 2024-08, Vol.125 (9) |
issn | 0003-6951 1077-3118 |
language | eng |
recordid | cdi_proquest_journals_3097234684 |
source | AIP Journals Complete |
subjects | Anisotropy Close packed lattices Diameters Elementary excitations Ferromagnetism First principles Hexagonal lattice Hypothetical particles Magnets Monolayers Particle theory Topology |
title | High-topological-number skyrmions with tunable diameters in two-dimensional frustrated J1−J2 magnets |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T14%3A14%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=High-topological-number%20skyrmions%20with%20tunable%20diameters%20in%20two-dimensional%20frustrated%20J1%E2%88%92J2%20magnets&rft.jtitle=Applied%20physics%20letters&rft.au=Hu,%20Hongliang&rft.date=2024-08-26&rft.volume=125&rft.issue=9&rft.issn=0003-6951&rft.eissn=1077-3118&rft_id=info:doi/10.1063/5.0217683&rft_dat=%3Cproquest_cross%3E3097234684%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3097234684&rft_id=info:pmid/&rfr_iscdi=true |