A Comparison of Regression Methods for Inferring Near‐Surface NO2 With Satellite Data

Nitrogen dioxide (NO2) is an atmospheric pollutant emitted from anthropogenic and natural sources. Human exposure to high NO2 concentrations causes cardiovascular and respiratory illnesses. The Environmental Protection Agency operates ground monitors across the U.S. which take hourly measurements of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of geophysical research. Atmospheres 2024-08, Vol.129 (16), p.n/a
Hauptverfasser: Kim, Eliot J., Holloway, Tracey, Kokandakar, Ajinkya, Harkey, Monica, Elkins, Stephanie, Goldberg, Daniel L., Heck, Colleen
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 16
container_start_page
container_title Journal of geophysical research. Atmospheres
container_volume 129
creator Kim, Eliot J.
Holloway, Tracey
Kokandakar, Ajinkya
Harkey, Monica
Elkins, Stephanie
Goldberg, Daniel L.
Heck, Colleen
description Nitrogen dioxide (NO2) is an atmospheric pollutant emitted from anthropogenic and natural sources. Human exposure to high NO2 concentrations causes cardiovascular and respiratory illnesses. The Environmental Protection Agency operates ground monitors across the U.S. which take hourly measurements of NO2 concentrations, providing precise measurements for assessing human pollution exposure but with sparse spatial distribution. Satellite‐based instruments capture NO2 amounts through the atmospheric column with global coverage at regular spatial resolution, but do not directly measure surface NO2. This study compares regression methods using satellite NO2 data from the TROPospheric Ozone Monitoring Instrument (TROPOMI) to estimate annual surface NO2 concentrations in varying geographic and land use settings across the continental U.S. We then apply the best‐performing regression models to estimate surface NO2 at 0.01° by 0.01° resolution, and we term this estimate as quasi‐NO2 (qNO2). qNO2 agrees best with measurements at suburban sites (cross‐validation (CV) R2 = 0.72) and away from major roads (CV R2 = 0.75). Among U.S. regions, qNO2 agrees best with measurements in the Midwest (CV R2 = 0.89) and agrees least in the Southwest (CV R2 = 0.65). To account for the non‐Gaussian distribution of TROPOMI NO2, we apply data transforms, with the Anscombe transform yielding highest agreement across the continental U.S. (CV R2 = 0.77). The interpretability, minimal computational cost, and health relevance of qNO2 facilitates use of satellite data in a wide range of air quality applications. Plain Language Summary Nitrogen dioxide (NO2) is an air pollutant which causes cardiovascular and respiratory illnesses and reacts in the atmosphere to form other harmful pollutants. This necessitates accurate and reliable quantification of NO2 concentrations in the air. Ground monitors directly observe NO2 concentrations near the Earth's surface. However, monitors do not have sufficient spatial coverage to quantify NO2 at large scales. Satellite‐based instruments capture NO2 amounts across the Earth at increasingly high spatial resolution. However, satellite instruments cannot directly observe surface NO2 concentrations. In this study, we compare regression methods for estimating surface NO2 over the continental U.S. using satellite data and auxiliary land‐use variables. We find that NO2 estimated using multivariate regression models with transforms applied to inputs result in the h
doi_str_mv 10.1029/2024JD040906
format Article
fullrecord <record><control><sourceid>proquest_wiley</sourceid><recordid>TN_cdi_proquest_journals_3097110448</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3097110448</sourcerecordid><originalsourceid>FETCH-LOGICAL-p1957-be3a1beb89556118e79ee647a026f7ed27b840e499059ccefe0abd871becf7113</originalsourceid><addsrcrecordid>eNpNkMFOwkAQhjdGEwly8wE28Vydbbfd7pGAIgQhAQ3emm2ZhSWlW3dLDDcfwWf0SazBGOcy8yff_H_yE3LN4JZBKO9CCPlkCBwkJGekE7JEBqmUyfnfLV4vSc_7HbSTQsRj3iGrPh3Yfa2c8baiVtMFbhx6b1r1hM3Wrj3V1tFxpdE5U23oDJX7-vhcHpxWBdLZPKQr02zpUjVYlqZBOlSNuiIXWpUee7-7S14e7p8Hj8F0PhoP-tOgZjIWQY6RYjnmqYzjhLEUhURMuFAQJlrgOhR5ygG5lBDLokCNoPJ1KtqfQgvGoi65OfnWzr4d0DfZzh5c1UZmEciWAM7TlopO1Lsp8ZjVzuyVO2YMsp_qsv_VZZPRYhhLEYnoG5M-YuU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3097110448</pqid></control><display><type>article</type><title>A Comparison of Regression Methods for Inferring Near‐Surface NO2 With Satellite Data</title><source>Wiley Online Library Journals Frontfile Complete</source><source>Alma/SFX Local Collection</source><creator>Kim, Eliot J. ; Holloway, Tracey ; Kokandakar, Ajinkya ; Harkey, Monica ; Elkins, Stephanie ; Goldberg, Daniel L. ; Heck, Colleen</creator><creatorcontrib>Kim, Eliot J. ; Holloway, Tracey ; Kokandakar, Ajinkya ; Harkey, Monica ; Elkins, Stephanie ; Goldberg, Daniel L. ; Heck, Colleen</creatorcontrib><description>Nitrogen dioxide (NO2) is an atmospheric pollutant emitted from anthropogenic and natural sources. Human exposure to high NO2 concentrations causes cardiovascular and respiratory illnesses. The Environmental Protection Agency operates ground monitors across the U.S. which take hourly measurements of NO2 concentrations, providing precise measurements for assessing human pollution exposure but with sparse spatial distribution. Satellite‐based instruments capture NO2 amounts through the atmospheric column with global coverage at regular spatial resolution, but do not directly measure surface NO2. This study compares regression methods using satellite NO2 data from the TROPospheric Ozone Monitoring Instrument (TROPOMI) to estimate annual surface NO2 concentrations in varying geographic and land use settings across the continental U.S. We then apply the best‐performing regression models to estimate surface NO2 at 0.01° by 0.01° resolution, and we term this estimate as quasi‐NO2 (qNO2). qNO2 agrees best with measurements at suburban sites (cross‐validation (CV) R2 = 0.72) and away from major roads (CV R2 = 0.75). Among U.S. regions, qNO2 agrees best with measurements in the Midwest (CV R2 = 0.89) and agrees least in the Southwest (CV R2 = 0.65). To account for the non‐Gaussian distribution of TROPOMI NO2, we apply data transforms, with the Anscombe transform yielding highest agreement across the continental U.S. (CV R2 = 0.77). The interpretability, minimal computational cost, and health relevance of qNO2 facilitates use of satellite data in a wide range of air quality applications. Plain Language Summary Nitrogen dioxide (NO2) is an air pollutant which causes cardiovascular and respiratory illnesses and reacts in the atmosphere to form other harmful pollutants. This necessitates accurate and reliable quantification of NO2 concentrations in the air. Ground monitors directly observe NO2 concentrations near the Earth's surface. However, monitors do not have sufficient spatial coverage to quantify NO2 at large scales. Satellite‐based instruments capture NO2 amounts across the Earth at increasingly high spatial resolution. However, satellite instruments cannot directly observe surface NO2 concentrations. In this study, we compare regression methods for estimating surface NO2 over the continental U.S. using satellite data and auxiliary land‐use variables. We find that NO2 estimated using multivariate regression models with transforms applied to inputs result in the highest agreement with surface NO2 among the regression methods we investigated. We then use the regression models to quantify surface NO2 concentration across the U.S. at 0.01° by 0.01° spatial resolution. Our work leverages the precision of ground observations and the high resolution of satellite data to accurately quantify surface NO2. The interpretable, generalizable, and easily applicable methods used in our study will facilitate the use of satellite data for air quality and human health assessments. Key Points We compare regression methods to estimate surface nitrogen dioxide concentrations at 0.01° resolution using satellite and land use data Multivariate linear regression with Anscombe‐transformed inputs has strongest agreement with surface nitrogen dioxide measurements Regression methods provide accurate, low‐bias concentration estimates with minimal computational and data requirements</description><identifier>ISSN: 2169-897X</identifier><identifier>EISSN: 2169-8996</identifier><identifier>DOI: 10.1029/2024JD040906</identifier><language>eng</language><publisher>Washington: Blackwell Publishing Ltd</publisher><subject>Air ; Air pollution ; Air quality ; Anthropogenic factors ; Earth surface ; Environmental monitoring ; Environmental protection ; Gaussian distribution ; High resolution ; Illnesses ; Land use ; Monitoring instruments ; Monitors ; Multivariate analysis ; Nitrogen ; Nitrogen dioxide ; NO2 ; Normal distribution ; Ozone ; Ozone monitoring ; Pollutants ; Pollution sources ; regression ; Regression analysis ; Regression models ; Respiratory diseases ; Respiratory disorders ; satellite ; Satellite data ; Satellite instruments ; Satellite observation ; Satellites ; Spacecraft recovery ; Spatial data ; Spatial discrimination ; Spatial distribution ; Spatial resolution ; Statistical analysis ; TROPOMI ; Tropospheric ozone</subject><ispartof>Journal of geophysical research. Atmospheres, 2024-08, Vol.129 (16), p.n/a</ispartof><rights>2024 The Author(s).</rights><rights>2024. This article is published under http://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-8488-408X ; 0000-0002-0646-7926 ; 0000-0002-3152-2130 ; 0000-0003-2078-7456 ; 0000-0001-6628-2272</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1029%2F2024JD040906$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1029%2F2024JD040906$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,1411,27903,27904,45553,45554</link.rule.ids></links><search><creatorcontrib>Kim, Eliot J.</creatorcontrib><creatorcontrib>Holloway, Tracey</creatorcontrib><creatorcontrib>Kokandakar, Ajinkya</creatorcontrib><creatorcontrib>Harkey, Monica</creatorcontrib><creatorcontrib>Elkins, Stephanie</creatorcontrib><creatorcontrib>Goldberg, Daniel L.</creatorcontrib><creatorcontrib>Heck, Colleen</creatorcontrib><title>A Comparison of Regression Methods for Inferring Near‐Surface NO2 With Satellite Data</title><title>Journal of geophysical research. Atmospheres</title><description>Nitrogen dioxide (NO2) is an atmospheric pollutant emitted from anthropogenic and natural sources. Human exposure to high NO2 concentrations causes cardiovascular and respiratory illnesses. The Environmental Protection Agency operates ground monitors across the U.S. which take hourly measurements of NO2 concentrations, providing precise measurements for assessing human pollution exposure but with sparse spatial distribution. Satellite‐based instruments capture NO2 amounts through the atmospheric column with global coverage at regular spatial resolution, but do not directly measure surface NO2. This study compares regression methods using satellite NO2 data from the TROPospheric Ozone Monitoring Instrument (TROPOMI) to estimate annual surface NO2 concentrations in varying geographic and land use settings across the continental U.S. We then apply the best‐performing regression models to estimate surface NO2 at 0.01° by 0.01° resolution, and we term this estimate as quasi‐NO2 (qNO2). qNO2 agrees best with measurements at suburban sites (cross‐validation (CV) R2 = 0.72) and away from major roads (CV R2 = 0.75). Among U.S. regions, qNO2 agrees best with measurements in the Midwest (CV R2 = 0.89) and agrees least in the Southwest (CV R2 = 0.65). To account for the non‐Gaussian distribution of TROPOMI NO2, we apply data transforms, with the Anscombe transform yielding highest agreement across the continental U.S. (CV R2 = 0.77). The interpretability, minimal computational cost, and health relevance of qNO2 facilitates use of satellite data in a wide range of air quality applications. Plain Language Summary Nitrogen dioxide (NO2) is an air pollutant which causes cardiovascular and respiratory illnesses and reacts in the atmosphere to form other harmful pollutants. This necessitates accurate and reliable quantification of NO2 concentrations in the air. Ground monitors directly observe NO2 concentrations near the Earth's surface. However, monitors do not have sufficient spatial coverage to quantify NO2 at large scales. Satellite‐based instruments capture NO2 amounts across the Earth at increasingly high spatial resolution. However, satellite instruments cannot directly observe surface NO2 concentrations. In this study, we compare regression methods for estimating surface NO2 over the continental U.S. using satellite data and auxiliary land‐use variables. We find that NO2 estimated using multivariate regression models with transforms applied to inputs result in the highest agreement with surface NO2 among the regression methods we investigated. We then use the regression models to quantify surface NO2 concentration across the U.S. at 0.01° by 0.01° spatial resolution. Our work leverages the precision of ground observations and the high resolution of satellite data to accurately quantify surface NO2. The interpretable, generalizable, and easily applicable methods used in our study will facilitate the use of satellite data for air quality and human health assessments. Key Points We compare regression methods to estimate surface nitrogen dioxide concentrations at 0.01° resolution using satellite and land use data Multivariate linear regression with Anscombe‐transformed inputs has strongest agreement with surface nitrogen dioxide measurements Regression methods provide accurate, low‐bias concentration estimates with minimal computational and data requirements</description><subject>Air</subject><subject>Air pollution</subject><subject>Air quality</subject><subject>Anthropogenic factors</subject><subject>Earth surface</subject><subject>Environmental monitoring</subject><subject>Environmental protection</subject><subject>Gaussian distribution</subject><subject>High resolution</subject><subject>Illnesses</subject><subject>Land use</subject><subject>Monitoring instruments</subject><subject>Monitors</subject><subject>Multivariate analysis</subject><subject>Nitrogen</subject><subject>Nitrogen dioxide</subject><subject>NO2</subject><subject>Normal distribution</subject><subject>Ozone</subject><subject>Ozone monitoring</subject><subject>Pollutants</subject><subject>Pollution sources</subject><subject>regression</subject><subject>Regression analysis</subject><subject>Regression models</subject><subject>Respiratory diseases</subject><subject>Respiratory disorders</subject><subject>satellite</subject><subject>Satellite data</subject><subject>Satellite instruments</subject><subject>Satellite observation</subject><subject>Satellites</subject><subject>Spacecraft recovery</subject><subject>Spatial data</subject><subject>Spatial discrimination</subject><subject>Spatial distribution</subject><subject>Spatial resolution</subject><subject>Statistical analysis</subject><subject>TROPOMI</subject><subject>Tropospheric ozone</subject><issn>2169-897X</issn><issn>2169-8996</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><recordid>eNpNkMFOwkAQhjdGEwly8wE28Vydbbfd7pGAIgQhAQ3emm2ZhSWlW3dLDDcfwWf0SazBGOcy8yff_H_yE3LN4JZBKO9CCPlkCBwkJGekE7JEBqmUyfnfLV4vSc_7HbSTQsRj3iGrPh3Yfa2c8baiVtMFbhx6b1r1hM3Wrj3V1tFxpdE5U23oDJX7-vhcHpxWBdLZPKQr02zpUjVYlqZBOlSNuiIXWpUee7-7S14e7p8Hj8F0PhoP-tOgZjIWQY6RYjnmqYzjhLEUhURMuFAQJlrgOhR5ygG5lBDLokCNoPJ1KtqfQgvGoi65OfnWzr4d0DfZzh5c1UZmEciWAM7TlopO1Lsp8ZjVzuyVO2YMsp_qsv_VZZPRYhhLEYnoG5M-YuU</recordid><startdate>20240828</startdate><enddate>20240828</enddate><creator>Kim, Eliot J.</creator><creator>Holloway, Tracey</creator><creator>Kokandakar, Ajinkya</creator><creator>Harkey, Monica</creator><creator>Elkins, Stephanie</creator><creator>Goldberg, Daniel L.</creator><creator>Heck, Colleen</creator><general>Blackwell Publishing Ltd</general><scope>24P</scope><scope>WIN</scope><scope>7TG</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>KL.</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-8488-408X</orcidid><orcidid>https://orcid.org/0000-0002-0646-7926</orcidid><orcidid>https://orcid.org/0000-0002-3152-2130</orcidid><orcidid>https://orcid.org/0000-0003-2078-7456</orcidid><orcidid>https://orcid.org/0000-0001-6628-2272</orcidid></search><sort><creationdate>20240828</creationdate><title>A Comparison of Regression Methods for Inferring Near‐Surface NO2 With Satellite Data</title><author>Kim, Eliot J. ; Holloway, Tracey ; Kokandakar, Ajinkya ; Harkey, Monica ; Elkins, Stephanie ; Goldberg, Daniel L. ; Heck, Colleen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p1957-be3a1beb89556118e79ee647a026f7ed27b840e499059ccefe0abd871becf7113</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Air</topic><topic>Air pollution</topic><topic>Air quality</topic><topic>Anthropogenic factors</topic><topic>Earth surface</topic><topic>Environmental monitoring</topic><topic>Environmental protection</topic><topic>Gaussian distribution</topic><topic>High resolution</topic><topic>Illnesses</topic><topic>Land use</topic><topic>Monitoring instruments</topic><topic>Monitors</topic><topic>Multivariate analysis</topic><topic>Nitrogen</topic><topic>Nitrogen dioxide</topic><topic>NO2</topic><topic>Normal distribution</topic><topic>Ozone</topic><topic>Ozone monitoring</topic><topic>Pollutants</topic><topic>Pollution sources</topic><topic>regression</topic><topic>Regression analysis</topic><topic>Regression models</topic><topic>Respiratory diseases</topic><topic>Respiratory disorders</topic><topic>satellite</topic><topic>Satellite data</topic><topic>Satellite instruments</topic><topic>Satellite observation</topic><topic>Satellites</topic><topic>Spacecraft recovery</topic><topic>Spatial data</topic><topic>Spatial discrimination</topic><topic>Spatial distribution</topic><topic>Spatial resolution</topic><topic>Statistical analysis</topic><topic>TROPOMI</topic><topic>Tropospheric ozone</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kim, Eliot J.</creatorcontrib><creatorcontrib>Holloway, Tracey</creatorcontrib><creatorcontrib>Kokandakar, Ajinkya</creatorcontrib><creatorcontrib>Harkey, Monica</creatorcontrib><creatorcontrib>Elkins, Stephanie</creatorcontrib><creatorcontrib>Goldberg, Daniel L.</creatorcontrib><creatorcontrib>Heck, Colleen</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>Wiley Free Content</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of geophysical research. Atmospheres</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kim, Eliot J.</au><au>Holloway, Tracey</au><au>Kokandakar, Ajinkya</au><au>Harkey, Monica</au><au>Elkins, Stephanie</au><au>Goldberg, Daniel L.</au><au>Heck, Colleen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Comparison of Regression Methods for Inferring Near‐Surface NO2 With Satellite Data</atitle><jtitle>Journal of geophysical research. Atmospheres</jtitle><date>2024-08-28</date><risdate>2024</risdate><volume>129</volume><issue>16</issue><epage>n/a</epage><issn>2169-897X</issn><eissn>2169-8996</eissn><abstract>Nitrogen dioxide (NO2) is an atmospheric pollutant emitted from anthropogenic and natural sources. Human exposure to high NO2 concentrations causes cardiovascular and respiratory illnesses. The Environmental Protection Agency operates ground monitors across the U.S. which take hourly measurements of NO2 concentrations, providing precise measurements for assessing human pollution exposure but with sparse spatial distribution. Satellite‐based instruments capture NO2 amounts through the atmospheric column with global coverage at regular spatial resolution, but do not directly measure surface NO2. This study compares regression methods using satellite NO2 data from the TROPospheric Ozone Monitoring Instrument (TROPOMI) to estimate annual surface NO2 concentrations in varying geographic and land use settings across the continental U.S. We then apply the best‐performing regression models to estimate surface NO2 at 0.01° by 0.01° resolution, and we term this estimate as quasi‐NO2 (qNO2). qNO2 agrees best with measurements at suburban sites (cross‐validation (CV) R2 = 0.72) and away from major roads (CV R2 = 0.75). Among U.S. regions, qNO2 agrees best with measurements in the Midwest (CV R2 = 0.89) and agrees least in the Southwest (CV R2 = 0.65). To account for the non‐Gaussian distribution of TROPOMI NO2, we apply data transforms, with the Anscombe transform yielding highest agreement across the continental U.S. (CV R2 = 0.77). The interpretability, minimal computational cost, and health relevance of qNO2 facilitates use of satellite data in a wide range of air quality applications. Plain Language Summary Nitrogen dioxide (NO2) is an air pollutant which causes cardiovascular and respiratory illnesses and reacts in the atmosphere to form other harmful pollutants. This necessitates accurate and reliable quantification of NO2 concentrations in the air. Ground monitors directly observe NO2 concentrations near the Earth's surface. However, monitors do not have sufficient spatial coverage to quantify NO2 at large scales. Satellite‐based instruments capture NO2 amounts across the Earth at increasingly high spatial resolution. However, satellite instruments cannot directly observe surface NO2 concentrations. In this study, we compare regression methods for estimating surface NO2 over the continental U.S. using satellite data and auxiliary land‐use variables. We find that NO2 estimated using multivariate regression models with transforms applied to inputs result in the highest agreement with surface NO2 among the regression methods we investigated. We then use the regression models to quantify surface NO2 concentration across the U.S. at 0.01° by 0.01° spatial resolution. Our work leverages the precision of ground observations and the high resolution of satellite data to accurately quantify surface NO2. The interpretable, generalizable, and easily applicable methods used in our study will facilitate the use of satellite data for air quality and human health assessments. Key Points We compare regression methods to estimate surface nitrogen dioxide concentrations at 0.01° resolution using satellite and land use data Multivariate linear regression with Anscombe‐transformed inputs has strongest agreement with surface nitrogen dioxide measurements Regression methods provide accurate, low‐bias concentration estimates with minimal computational and data requirements</abstract><cop>Washington</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1029/2024JD040906</doi><tpages>18</tpages><orcidid>https://orcid.org/0000-0002-8488-408X</orcidid><orcidid>https://orcid.org/0000-0002-0646-7926</orcidid><orcidid>https://orcid.org/0000-0002-3152-2130</orcidid><orcidid>https://orcid.org/0000-0003-2078-7456</orcidid><orcidid>https://orcid.org/0000-0001-6628-2272</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2169-897X
ispartof Journal of geophysical research. Atmospheres, 2024-08, Vol.129 (16), p.n/a
issn 2169-897X
2169-8996
language eng
recordid cdi_proquest_journals_3097110448
source Wiley Online Library Journals Frontfile Complete; Alma/SFX Local Collection
subjects Air
Air pollution
Air quality
Anthropogenic factors
Earth surface
Environmental monitoring
Environmental protection
Gaussian distribution
High resolution
Illnesses
Land use
Monitoring instruments
Monitors
Multivariate analysis
Nitrogen
Nitrogen dioxide
NO2
Normal distribution
Ozone
Ozone monitoring
Pollutants
Pollution sources
regression
Regression analysis
Regression models
Respiratory diseases
Respiratory disorders
satellite
Satellite data
Satellite instruments
Satellite observation
Satellites
Spacecraft recovery
Spatial data
Spatial discrimination
Spatial distribution
Spatial resolution
Statistical analysis
TROPOMI
Tropospheric ozone
title A Comparison of Regression Methods for Inferring Near‐Surface NO2 With Satellite Data
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T09%3A38%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_wiley&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Comparison%20of%20Regression%20Methods%20for%20Inferring%20Near%E2%80%90Surface%20NO2%20With%20Satellite%20Data&rft.jtitle=Journal%20of%20geophysical%20research.%20Atmospheres&rft.au=Kim,%20Eliot%20J.&rft.date=2024-08-28&rft.volume=129&rft.issue=16&rft.epage=n/a&rft.issn=2169-897X&rft.eissn=2169-8996&rft_id=info:doi/10.1029/2024JD040906&rft_dat=%3Cproquest_wiley%3E3097110448%3C/proquest_wiley%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3097110448&rft_id=info:pmid/&rfr_iscdi=true