Trace Fluorinated Carbon Dots Driven Li‐Garnet Solid‐State Batteries

Garnet solid‐state electrolyte Li6.5La3Zr1.5Ta0.5O12 (LLZTO) holds significant promise. However, the practical utilization has been seriously impeded by the poor contact of Li|garnet and electron leakage. Herein, one new type of garnet‐based solid‐state battery is proposed with high performance thro...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Angewandte Chemie 2024-09, Vol.136 (36), p.n/a
Hauptverfasser: Zhu, Fangjun, Xu, Laiqiang, Hu, Xinyu, Yang, Mushi, Liu, Huaxin, Gan, Chaolun, Deng, Wentao, Zou, Guoqiang, Hou, Hongshuai, Ji, Xiaobo
Format: Artikel
Sprache:eng ; ger
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 36
container_start_page
container_title Angewandte Chemie
container_volume 136
creator Zhu, Fangjun
Xu, Laiqiang
Hu, Xinyu
Yang, Mushi
Liu, Huaxin
Gan, Chaolun
Deng, Wentao
Zou, Guoqiang
Hou, Hongshuai
Ji, Xiaobo
description Garnet solid‐state electrolyte Li6.5La3Zr1.5Ta0.5O12 (LLZTO) holds significant promise. However, the practical utilization has been seriously impeded by the poor contact of Li|garnet and electron leakage. Herein, one new type of garnet‐based solid‐state battery is proposed with high performance through the disparity in interfacial energy, induced by the reaction between trace fluorinated carbon dots (FCDs) and Li. The work of adhesion of Li|garnet is increased by the acquired Li‐FCD composite, which facilitates an intimate Li|garnet interface with the promoted uniform Li+ deposition, revealed by density functional theory (DFT) calculations. It is further validated that a concentrated C−Li2O−LiF component at the Li|garnet interface is spontaneously constructed, due to the significant disparity in interfacial energy between C−Li2O−LiF|LLZTO and C−Li2O−LiF|Li. Furthermore, The electron transport and Li dendrites penetration are effectively hindered by the formed Li2O and LiF. The Li‐FCD|LLZTO|Li‐FCD symmetrical cells demonstrate stable cycling performance for over 3000 hours at 0.3 mA cm−2 and 800 hours at 0.5 mA cm−2. Furthermore, the LFP|garnet|Li‐FCD full cell exhibits remarkable cycling performance (91.6 % capacity retention after 500 cycles at 1 C). Our research has revealed a novel approach to establish a dendrite‐free Li|garnet interface, laying the groundwork for future advancements in garnet‐based solid‐state batteries. The pristine garnet surface exhibits poor wettability with Li metal, resulting in the formation of voids and gaps at the garnet/Li interface, which contributes to uneven electric field distribution and further leads to Li dendrite formation. A straightforward method is presented to construct a Li‐FCD composite for garnet‐based solid‐state batteries by the reaction between molten Li and a trace amount of FCDs (0.5 wt %). The Li‐FCD composite transforms the weak interface connection into intimate contact with garnet and inhibits electron leakage, thereby enhancing Li+ transfer across the interface and promoting dendrite‐free operation.
doi_str_mv 10.1002/ange.202410016
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3096783882</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3096783882</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1176-5a4569a62ce4db9429d5091885bc8195aad58dc67a1ba76f7eedfbd4a2b9be713</originalsourceid><addsrcrecordid>eNqFkM1Kw0AUhQdRsFa3rgOuU2cm87us_RWKLlrXw03mRlJqUmdSpTsfwWf0SUyp6NLV5cD3nQuHkGtGB4xSfgv1Mw445aJLTJ2QHpOcpZmW-pT0KBUiNVzYc3IR45pSqri2PTJfBSgwmW52TahqaNEnIwh5Uyfjpo3JOFRvWCeL6uvjcwahxjZZNpvKd3HZdnRyB22LocJ4Sc5K2ES8-rl98jSdrEbzdPE4ux8NF2nBmFapBCGVBcULFD63glsvqWXGyLwwzEoAL40vlAaWg1alRvRl7gXw3OaoWdYnN8febWhedxhbt252oe5euoxapU1mDO-owZEqQhNjwNJtQ_UCYe8YdYe13GEt97tWJ9ij8F5tcP8P7YYPs8mf-w3sJ2-9</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3096783882</pqid></control><display><type>article</type><title>Trace Fluorinated Carbon Dots Driven Li‐Garnet Solid‐State Batteries</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Zhu, Fangjun ; Xu, Laiqiang ; Hu, Xinyu ; Yang, Mushi ; Liu, Huaxin ; Gan, Chaolun ; Deng, Wentao ; Zou, Guoqiang ; Hou, Hongshuai ; Ji, Xiaobo</creator><creatorcontrib>Zhu, Fangjun ; Xu, Laiqiang ; Hu, Xinyu ; Yang, Mushi ; Liu, Huaxin ; Gan, Chaolun ; Deng, Wentao ; Zou, Guoqiang ; Hou, Hongshuai ; Ji, Xiaobo</creatorcontrib><description>Garnet solid‐state electrolyte Li6.5La3Zr1.5Ta0.5O12 (LLZTO) holds significant promise. However, the practical utilization has been seriously impeded by the poor contact of Li|garnet and electron leakage. Herein, one new type of garnet‐based solid‐state battery is proposed with high performance through the disparity in interfacial energy, induced by the reaction between trace fluorinated carbon dots (FCDs) and Li. The work of adhesion of Li|garnet is increased by the acquired Li‐FCD composite, which facilitates an intimate Li|garnet interface with the promoted uniform Li+ deposition, revealed by density functional theory (DFT) calculations. It is further validated that a concentrated C−Li2O−LiF component at the Li|garnet interface is spontaneously constructed, due to the significant disparity in interfacial energy between C−Li2O−LiF|LLZTO and C−Li2O−LiF|Li. Furthermore, The electron transport and Li dendrites penetration are effectively hindered by the formed Li2O and LiF. The Li‐FCD|LLZTO|Li‐FCD symmetrical cells demonstrate stable cycling performance for over 3000 hours at 0.3 mA cm−2 and 800 hours at 0.5 mA cm−2. Furthermore, the LFP|garnet|Li‐FCD full cell exhibits remarkable cycling performance (91.6 % capacity retention after 500 cycles at 1 C). Our research has revealed a novel approach to establish a dendrite‐free Li|garnet interface, laying the groundwork for future advancements in garnet‐based solid‐state batteries. The pristine garnet surface exhibits poor wettability with Li metal, resulting in the formation of voids and gaps at the garnet/Li interface, which contributes to uneven electric field distribution and further leads to Li dendrite formation. A straightforward method is presented to construct a Li‐FCD composite for garnet‐based solid‐state batteries by the reaction between molten Li and a trace amount of FCDs (0.5 wt %). The Li‐FCD composite transforms the weak interface connection into intimate contact with garnet and inhibits electron leakage, thereby enhancing Li+ transfer across the interface and promoting dendrite‐free operation.</description><identifier>ISSN: 0044-8249</identifier><identifier>EISSN: 1521-3757</identifier><identifier>DOI: 10.1002/ange.202410016</identifier><language>eng ; ger</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Carbon ; Carbon dots ; Dendrites ; Density functional theory ; Electrolytic cells ; electron leakage ; Electron transport ; fluorinated carbon dots ; Fluorination ; garnet electrolyte ; Garnets ; interface contact ; Interfacial energy ; Li dendrite ; Lithium fluoride ; Lithium oxides</subject><ispartof>Angewandte Chemie, 2024-09, Vol.136 (36), p.n/a</ispartof><rights>2024 Wiley-VCH GmbH</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c1176-5a4569a62ce4db9429d5091885bc8195aad58dc67a1ba76f7eedfbd4a2b9be713</cites><orcidid>0000-0002-5405-7913</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fange.202410016$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fange.202410016$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,777,781,1412,27905,27906,45555,45556</link.rule.ids></links><search><creatorcontrib>Zhu, Fangjun</creatorcontrib><creatorcontrib>Xu, Laiqiang</creatorcontrib><creatorcontrib>Hu, Xinyu</creatorcontrib><creatorcontrib>Yang, Mushi</creatorcontrib><creatorcontrib>Liu, Huaxin</creatorcontrib><creatorcontrib>Gan, Chaolun</creatorcontrib><creatorcontrib>Deng, Wentao</creatorcontrib><creatorcontrib>Zou, Guoqiang</creatorcontrib><creatorcontrib>Hou, Hongshuai</creatorcontrib><creatorcontrib>Ji, Xiaobo</creatorcontrib><title>Trace Fluorinated Carbon Dots Driven Li‐Garnet Solid‐State Batteries</title><title>Angewandte Chemie</title><description>Garnet solid‐state electrolyte Li6.5La3Zr1.5Ta0.5O12 (LLZTO) holds significant promise. However, the practical utilization has been seriously impeded by the poor contact of Li|garnet and electron leakage. Herein, one new type of garnet‐based solid‐state battery is proposed with high performance through the disparity in interfacial energy, induced by the reaction between trace fluorinated carbon dots (FCDs) and Li. The work of adhesion of Li|garnet is increased by the acquired Li‐FCD composite, which facilitates an intimate Li|garnet interface with the promoted uniform Li+ deposition, revealed by density functional theory (DFT) calculations. It is further validated that a concentrated C−Li2O−LiF component at the Li|garnet interface is spontaneously constructed, due to the significant disparity in interfacial energy between C−Li2O−LiF|LLZTO and C−Li2O−LiF|Li. Furthermore, The electron transport and Li dendrites penetration are effectively hindered by the formed Li2O and LiF. The Li‐FCD|LLZTO|Li‐FCD symmetrical cells demonstrate stable cycling performance for over 3000 hours at 0.3 mA cm−2 and 800 hours at 0.5 mA cm−2. Furthermore, the LFP|garnet|Li‐FCD full cell exhibits remarkable cycling performance (91.6 % capacity retention after 500 cycles at 1 C). Our research has revealed a novel approach to establish a dendrite‐free Li|garnet interface, laying the groundwork for future advancements in garnet‐based solid‐state batteries. The pristine garnet surface exhibits poor wettability with Li metal, resulting in the formation of voids and gaps at the garnet/Li interface, which contributes to uneven electric field distribution and further leads to Li dendrite formation. A straightforward method is presented to construct a Li‐FCD composite for garnet‐based solid‐state batteries by the reaction between molten Li and a trace amount of FCDs (0.5 wt %). The Li‐FCD composite transforms the weak interface connection into intimate contact with garnet and inhibits electron leakage, thereby enhancing Li+ transfer across the interface and promoting dendrite‐free operation.</description><subject>Carbon</subject><subject>Carbon dots</subject><subject>Dendrites</subject><subject>Density functional theory</subject><subject>Electrolytic cells</subject><subject>electron leakage</subject><subject>Electron transport</subject><subject>fluorinated carbon dots</subject><subject>Fluorination</subject><subject>garnet electrolyte</subject><subject>Garnets</subject><subject>interface contact</subject><subject>Interfacial energy</subject><subject>Li dendrite</subject><subject>Lithium fluoride</subject><subject>Lithium oxides</subject><issn>0044-8249</issn><issn>1521-3757</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNqFkM1Kw0AUhQdRsFa3rgOuU2cm87us_RWKLlrXw03mRlJqUmdSpTsfwWf0SUyp6NLV5cD3nQuHkGtGB4xSfgv1Mw445aJLTJ2QHpOcpZmW-pT0KBUiNVzYc3IR45pSqri2PTJfBSgwmW52TahqaNEnIwh5Uyfjpo3JOFRvWCeL6uvjcwahxjZZNpvKd3HZdnRyB22LocJ4Sc5K2ES8-rl98jSdrEbzdPE4ux8NF2nBmFapBCGVBcULFD63glsvqWXGyLwwzEoAL40vlAaWg1alRvRl7gXw3OaoWdYnN8febWhedxhbt252oe5euoxapU1mDO-owZEqQhNjwNJtQ_UCYe8YdYe13GEt97tWJ9ij8F5tcP8P7YYPs8mf-w3sJ2-9</recordid><startdate>20240902</startdate><enddate>20240902</enddate><creator>Zhu, Fangjun</creator><creator>Xu, Laiqiang</creator><creator>Hu, Xinyu</creator><creator>Yang, Mushi</creator><creator>Liu, Huaxin</creator><creator>Gan, Chaolun</creator><creator>Deng, Wentao</creator><creator>Zou, Guoqiang</creator><creator>Hou, Hongshuai</creator><creator>Ji, Xiaobo</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-5405-7913</orcidid></search><sort><creationdate>20240902</creationdate><title>Trace Fluorinated Carbon Dots Driven Li‐Garnet Solid‐State Batteries</title><author>Zhu, Fangjun ; Xu, Laiqiang ; Hu, Xinyu ; Yang, Mushi ; Liu, Huaxin ; Gan, Chaolun ; Deng, Wentao ; Zou, Guoqiang ; Hou, Hongshuai ; Ji, Xiaobo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1176-5a4569a62ce4db9429d5091885bc8195aad58dc67a1ba76f7eedfbd4a2b9be713</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng ; ger</language><creationdate>2024</creationdate><topic>Carbon</topic><topic>Carbon dots</topic><topic>Dendrites</topic><topic>Density functional theory</topic><topic>Electrolytic cells</topic><topic>electron leakage</topic><topic>Electron transport</topic><topic>fluorinated carbon dots</topic><topic>Fluorination</topic><topic>garnet electrolyte</topic><topic>Garnets</topic><topic>interface contact</topic><topic>Interfacial energy</topic><topic>Li dendrite</topic><topic>Lithium fluoride</topic><topic>Lithium oxides</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhu, Fangjun</creatorcontrib><creatorcontrib>Xu, Laiqiang</creatorcontrib><creatorcontrib>Hu, Xinyu</creatorcontrib><creatorcontrib>Yang, Mushi</creatorcontrib><creatorcontrib>Liu, Huaxin</creatorcontrib><creatorcontrib>Gan, Chaolun</creatorcontrib><creatorcontrib>Deng, Wentao</creatorcontrib><creatorcontrib>Zou, Guoqiang</creatorcontrib><creatorcontrib>Hou, Hongshuai</creatorcontrib><creatorcontrib>Ji, Xiaobo</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Angewandte Chemie</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhu, Fangjun</au><au>Xu, Laiqiang</au><au>Hu, Xinyu</au><au>Yang, Mushi</au><au>Liu, Huaxin</au><au>Gan, Chaolun</au><au>Deng, Wentao</au><au>Zou, Guoqiang</au><au>Hou, Hongshuai</au><au>Ji, Xiaobo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Trace Fluorinated Carbon Dots Driven Li‐Garnet Solid‐State Batteries</atitle><jtitle>Angewandte Chemie</jtitle><date>2024-09-02</date><risdate>2024</risdate><volume>136</volume><issue>36</issue><epage>n/a</epage><issn>0044-8249</issn><eissn>1521-3757</eissn><abstract>Garnet solid‐state electrolyte Li6.5La3Zr1.5Ta0.5O12 (LLZTO) holds significant promise. However, the practical utilization has been seriously impeded by the poor contact of Li|garnet and electron leakage. Herein, one new type of garnet‐based solid‐state battery is proposed with high performance through the disparity in interfacial energy, induced by the reaction between trace fluorinated carbon dots (FCDs) and Li. The work of adhesion of Li|garnet is increased by the acquired Li‐FCD composite, which facilitates an intimate Li|garnet interface with the promoted uniform Li+ deposition, revealed by density functional theory (DFT) calculations. It is further validated that a concentrated C−Li2O−LiF component at the Li|garnet interface is spontaneously constructed, due to the significant disparity in interfacial energy between C−Li2O−LiF|LLZTO and C−Li2O−LiF|Li. Furthermore, The electron transport and Li dendrites penetration are effectively hindered by the formed Li2O and LiF. The Li‐FCD|LLZTO|Li‐FCD symmetrical cells demonstrate stable cycling performance for over 3000 hours at 0.3 mA cm−2 and 800 hours at 0.5 mA cm−2. Furthermore, the LFP|garnet|Li‐FCD full cell exhibits remarkable cycling performance (91.6 % capacity retention after 500 cycles at 1 C). Our research has revealed a novel approach to establish a dendrite‐free Li|garnet interface, laying the groundwork for future advancements in garnet‐based solid‐state batteries. The pristine garnet surface exhibits poor wettability with Li metal, resulting in the formation of voids and gaps at the garnet/Li interface, which contributes to uneven electric field distribution and further leads to Li dendrite formation. A straightforward method is presented to construct a Li‐FCD composite for garnet‐based solid‐state batteries by the reaction between molten Li and a trace amount of FCDs (0.5 wt %). The Li‐FCD composite transforms the weak interface connection into intimate contact with garnet and inhibits electron leakage, thereby enhancing Li+ transfer across the interface and promoting dendrite‐free operation.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/ange.202410016</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-5405-7913</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0044-8249
ispartof Angewandte Chemie, 2024-09, Vol.136 (36), p.n/a
issn 0044-8249
1521-3757
language eng ; ger
recordid cdi_proquest_journals_3096783882
source Wiley Online Library Journals Frontfile Complete
subjects Carbon
Carbon dots
Dendrites
Density functional theory
Electrolytic cells
electron leakage
Electron transport
fluorinated carbon dots
Fluorination
garnet electrolyte
Garnets
interface contact
Interfacial energy
Li dendrite
Lithium fluoride
Lithium oxides
title Trace Fluorinated Carbon Dots Driven Li‐Garnet Solid‐State Batteries
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T00%3A31%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Trace%20Fluorinated%20Carbon%20Dots%20Driven%20Li%E2%80%90Garnet%20Solid%E2%80%90State%20Batteries&rft.jtitle=Angewandte%20Chemie&rft.au=Zhu,%20Fangjun&rft.date=2024-09-02&rft.volume=136&rft.issue=36&rft.epage=n/a&rft.issn=0044-8249&rft.eissn=1521-3757&rft_id=info:doi/10.1002/ange.202410016&rft_dat=%3Cproquest_cross%3E3096783882%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3096783882&rft_id=info:pmid/&rfr_iscdi=true