Trace Fluorinated Carbon Dots Driven Li‐Garnet Solid‐State Batteries
Garnet solid‐state electrolyte Li6.5La3Zr1.5Ta0.5O12 (LLZTO) holds significant promise. However, the practical utilization has been seriously impeded by the poor contact of Li|garnet and electron leakage. Herein, one new type of garnet‐based solid‐state battery is proposed with high performance thro...
Gespeichert in:
Veröffentlicht in: | Angewandte Chemie 2024-09, Vol.136 (36), p.n/a |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng ; ger |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 36 |
container_start_page | |
container_title | Angewandte Chemie |
container_volume | 136 |
creator | Zhu, Fangjun Xu, Laiqiang Hu, Xinyu Yang, Mushi Liu, Huaxin Gan, Chaolun Deng, Wentao Zou, Guoqiang Hou, Hongshuai Ji, Xiaobo |
description | Garnet solid‐state electrolyte Li6.5La3Zr1.5Ta0.5O12 (LLZTO) holds significant promise. However, the practical utilization has been seriously impeded by the poor contact of Li|garnet and electron leakage. Herein, one new type of garnet‐based solid‐state battery is proposed with high performance through the disparity in interfacial energy, induced by the reaction between trace fluorinated carbon dots (FCDs) and Li. The work of adhesion of Li|garnet is increased by the acquired Li‐FCD composite, which facilitates an intimate Li|garnet interface with the promoted uniform Li+ deposition, revealed by density functional theory (DFT) calculations. It is further validated that a concentrated C−Li2O−LiF component at the Li|garnet interface is spontaneously constructed, due to the significant disparity in interfacial energy between C−Li2O−LiF|LLZTO and C−Li2O−LiF|Li. Furthermore, The electron transport and Li dendrites penetration are effectively hindered by the formed Li2O and LiF. The Li‐FCD|LLZTO|Li‐FCD symmetrical cells demonstrate stable cycling performance for over 3000 hours at 0.3 mA cm−2 and 800 hours at 0.5 mA cm−2. Furthermore, the LFP|garnet|Li‐FCD full cell exhibits remarkable cycling performance (91.6 % capacity retention after 500 cycles at 1 C). Our research has revealed a novel approach to establish a dendrite‐free Li|garnet interface, laying the groundwork for future advancements in garnet‐based solid‐state batteries.
The pristine garnet surface exhibits poor wettability with Li metal, resulting in the formation of voids and gaps at the garnet/Li interface, which contributes to uneven electric field distribution and further leads to Li dendrite formation. A straightforward method is presented to construct a Li‐FCD composite for garnet‐based solid‐state batteries by the reaction between molten Li and a trace amount of FCDs (0.5 wt %). The Li‐FCD composite transforms the weak interface connection into intimate contact with garnet and inhibits electron leakage, thereby enhancing Li+ transfer across the interface and promoting dendrite‐free operation. |
doi_str_mv | 10.1002/ange.202410016 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3096783882</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3096783882</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1176-5a4569a62ce4db9429d5091885bc8195aad58dc67a1ba76f7eedfbd4a2b9be713</originalsourceid><addsrcrecordid>eNqFkM1Kw0AUhQdRsFa3rgOuU2cm87us_RWKLlrXw03mRlJqUmdSpTsfwWf0SUyp6NLV5cD3nQuHkGtGB4xSfgv1Mw445aJLTJ2QHpOcpZmW-pT0KBUiNVzYc3IR45pSqri2PTJfBSgwmW52TahqaNEnIwh5Uyfjpo3JOFRvWCeL6uvjcwahxjZZNpvKd3HZdnRyB22LocJ4Sc5K2ES8-rl98jSdrEbzdPE4ux8NF2nBmFapBCGVBcULFD63glsvqWXGyLwwzEoAL40vlAaWg1alRvRl7gXw3OaoWdYnN8febWhedxhbt252oe5euoxapU1mDO-owZEqQhNjwNJtQ_UCYe8YdYe13GEt97tWJ9ij8F5tcP8P7YYPs8mf-w3sJ2-9</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3096783882</pqid></control><display><type>article</type><title>Trace Fluorinated Carbon Dots Driven Li‐Garnet Solid‐State Batteries</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Zhu, Fangjun ; Xu, Laiqiang ; Hu, Xinyu ; Yang, Mushi ; Liu, Huaxin ; Gan, Chaolun ; Deng, Wentao ; Zou, Guoqiang ; Hou, Hongshuai ; Ji, Xiaobo</creator><creatorcontrib>Zhu, Fangjun ; Xu, Laiqiang ; Hu, Xinyu ; Yang, Mushi ; Liu, Huaxin ; Gan, Chaolun ; Deng, Wentao ; Zou, Guoqiang ; Hou, Hongshuai ; Ji, Xiaobo</creatorcontrib><description>Garnet solid‐state electrolyte Li6.5La3Zr1.5Ta0.5O12 (LLZTO) holds significant promise. However, the practical utilization has been seriously impeded by the poor contact of Li|garnet and electron leakage. Herein, one new type of garnet‐based solid‐state battery is proposed with high performance through the disparity in interfacial energy, induced by the reaction between trace fluorinated carbon dots (FCDs) and Li. The work of adhesion of Li|garnet is increased by the acquired Li‐FCD composite, which facilitates an intimate Li|garnet interface with the promoted uniform Li+ deposition, revealed by density functional theory (DFT) calculations. It is further validated that a concentrated C−Li2O−LiF component at the Li|garnet interface is spontaneously constructed, due to the significant disparity in interfacial energy between C−Li2O−LiF|LLZTO and C−Li2O−LiF|Li. Furthermore, The electron transport and Li dendrites penetration are effectively hindered by the formed Li2O and LiF. The Li‐FCD|LLZTO|Li‐FCD symmetrical cells demonstrate stable cycling performance for over 3000 hours at 0.3 mA cm−2 and 800 hours at 0.5 mA cm−2. Furthermore, the LFP|garnet|Li‐FCD full cell exhibits remarkable cycling performance (91.6 % capacity retention after 500 cycles at 1 C). Our research has revealed a novel approach to establish a dendrite‐free Li|garnet interface, laying the groundwork for future advancements in garnet‐based solid‐state batteries.
The pristine garnet surface exhibits poor wettability with Li metal, resulting in the formation of voids and gaps at the garnet/Li interface, which contributes to uneven electric field distribution and further leads to Li dendrite formation. A straightforward method is presented to construct a Li‐FCD composite for garnet‐based solid‐state batteries by the reaction between molten Li and a trace amount of FCDs (0.5 wt %). The Li‐FCD composite transforms the weak interface connection into intimate contact with garnet and inhibits electron leakage, thereby enhancing Li+ transfer across the interface and promoting dendrite‐free operation.</description><identifier>ISSN: 0044-8249</identifier><identifier>EISSN: 1521-3757</identifier><identifier>DOI: 10.1002/ange.202410016</identifier><language>eng ; ger</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Carbon ; Carbon dots ; Dendrites ; Density functional theory ; Electrolytic cells ; electron leakage ; Electron transport ; fluorinated carbon dots ; Fluorination ; garnet electrolyte ; Garnets ; interface contact ; Interfacial energy ; Li dendrite ; Lithium fluoride ; Lithium oxides</subject><ispartof>Angewandte Chemie, 2024-09, Vol.136 (36), p.n/a</ispartof><rights>2024 Wiley-VCH GmbH</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c1176-5a4569a62ce4db9429d5091885bc8195aad58dc67a1ba76f7eedfbd4a2b9be713</cites><orcidid>0000-0002-5405-7913</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fange.202410016$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fange.202410016$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,777,781,1412,27905,27906,45555,45556</link.rule.ids></links><search><creatorcontrib>Zhu, Fangjun</creatorcontrib><creatorcontrib>Xu, Laiqiang</creatorcontrib><creatorcontrib>Hu, Xinyu</creatorcontrib><creatorcontrib>Yang, Mushi</creatorcontrib><creatorcontrib>Liu, Huaxin</creatorcontrib><creatorcontrib>Gan, Chaolun</creatorcontrib><creatorcontrib>Deng, Wentao</creatorcontrib><creatorcontrib>Zou, Guoqiang</creatorcontrib><creatorcontrib>Hou, Hongshuai</creatorcontrib><creatorcontrib>Ji, Xiaobo</creatorcontrib><title>Trace Fluorinated Carbon Dots Driven Li‐Garnet Solid‐State Batteries</title><title>Angewandte Chemie</title><description>Garnet solid‐state electrolyte Li6.5La3Zr1.5Ta0.5O12 (LLZTO) holds significant promise. However, the practical utilization has been seriously impeded by the poor contact of Li|garnet and electron leakage. Herein, one new type of garnet‐based solid‐state battery is proposed with high performance through the disparity in interfacial energy, induced by the reaction between trace fluorinated carbon dots (FCDs) and Li. The work of adhesion of Li|garnet is increased by the acquired Li‐FCD composite, which facilitates an intimate Li|garnet interface with the promoted uniform Li+ deposition, revealed by density functional theory (DFT) calculations. It is further validated that a concentrated C−Li2O−LiF component at the Li|garnet interface is spontaneously constructed, due to the significant disparity in interfacial energy between C−Li2O−LiF|LLZTO and C−Li2O−LiF|Li. Furthermore, The electron transport and Li dendrites penetration are effectively hindered by the formed Li2O and LiF. The Li‐FCD|LLZTO|Li‐FCD symmetrical cells demonstrate stable cycling performance for over 3000 hours at 0.3 mA cm−2 and 800 hours at 0.5 mA cm−2. Furthermore, the LFP|garnet|Li‐FCD full cell exhibits remarkable cycling performance (91.6 % capacity retention after 500 cycles at 1 C). Our research has revealed a novel approach to establish a dendrite‐free Li|garnet interface, laying the groundwork for future advancements in garnet‐based solid‐state batteries.
The pristine garnet surface exhibits poor wettability with Li metal, resulting in the formation of voids and gaps at the garnet/Li interface, which contributes to uneven electric field distribution and further leads to Li dendrite formation. A straightforward method is presented to construct a Li‐FCD composite for garnet‐based solid‐state batteries by the reaction between molten Li and a trace amount of FCDs (0.5 wt %). The Li‐FCD composite transforms the weak interface connection into intimate contact with garnet and inhibits electron leakage, thereby enhancing Li+ transfer across the interface and promoting dendrite‐free operation.</description><subject>Carbon</subject><subject>Carbon dots</subject><subject>Dendrites</subject><subject>Density functional theory</subject><subject>Electrolytic cells</subject><subject>electron leakage</subject><subject>Electron transport</subject><subject>fluorinated carbon dots</subject><subject>Fluorination</subject><subject>garnet electrolyte</subject><subject>Garnets</subject><subject>interface contact</subject><subject>Interfacial energy</subject><subject>Li dendrite</subject><subject>Lithium fluoride</subject><subject>Lithium oxides</subject><issn>0044-8249</issn><issn>1521-3757</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNqFkM1Kw0AUhQdRsFa3rgOuU2cm87us_RWKLlrXw03mRlJqUmdSpTsfwWf0SUyp6NLV5cD3nQuHkGtGB4xSfgv1Mw445aJLTJ2QHpOcpZmW-pT0KBUiNVzYc3IR45pSqri2PTJfBSgwmW52TahqaNEnIwh5Uyfjpo3JOFRvWCeL6uvjcwahxjZZNpvKd3HZdnRyB22LocJ4Sc5K2ES8-rl98jSdrEbzdPE4ux8NF2nBmFapBCGVBcULFD63glsvqWXGyLwwzEoAL40vlAaWg1alRvRl7gXw3OaoWdYnN8febWhedxhbt252oe5euoxapU1mDO-owZEqQhNjwNJtQ_UCYe8YdYe13GEt97tWJ9ij8F5tcP8P7YYPs8mf-w3sJ2-9</recordid><startdate>20240902</startdate><enddate>20240902</enddate><creator>Zhu, Fangjun</creator><creator>Xu, Laiqiang</creator><creator>Hu, Xinyu</creator><creator>Yang, Mushi</creator><creator>Liu, Huaxin</creator><creator>Gan, Chaolun</creator><creator>Deng, Wentao</creator><creator>Zou, Guoqiang</creator><creator>Hou, Hongshuai</creator><creator>Ji, Xiaobo</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-5405-7913</orcidid></search><sort><creationdate>20240902</creationdate><title>Trace Fluorinated Carbon Dots Driven Li‐Garnet Solid‐State Batteries</title><author>Zhu, Fangjun ; Xu, Laiqiang ; Hu, Xinyu ; Yang, Mushi ; Liu, Huaxin ; Gan, Chaolun ; Deng, Wentao ; Zou, Guoqiang ; Hou, Hongshuai ; Ji, Xiaobo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1176-5a4569a62ce4db9429d5091885bc8195aad58dc67a1ba76f7eedfbd4a2b9be713</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng ; ger</language><creationdate>2024</creationdate><topic>Carbon</topic><topic>Carbon dots</topic><topic>Dendrites</topic><topic>Density functional theory</topic><topic>Electrolytic cells</topic><topic>electron leakage</topic><topic>Electron transport</topic><topic>fluorinated carbon dots</topic><topic>Fluorination</topic><topic>garnet electrolyte</topic><topic>Garnets</topic><topic>interface contact</topic><topic>Interfacial energy</topic><topic>Li dendrite</topic><topic>Lithium fluoride</topic><topic>Lithium oxides</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhu, Fangjun</creatorcontrib><creatorcontrib>Xu, Laiqiang</creatorcontrib><creatorcontrib>Hu, Xinyu</creatorcontrib><creatorcontrib>Yang, Mushi</creatorcontrib><creatorcontrib>Liu, Huaxin</creatorcontrib><creatorcontrib>Gan, Chaolun</creatorcontrib><creatorcontrib>Deng, Wentao</creatorcontrib><creatorcontrib>Zou, Guoqiang</creatorcontrib><creatorcontrib>Hou, Hongshuai</creatorcontrib><creatorcontrib>Ji, Xiaobo</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Angewandte Chemie</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhu, Fangjun</au><au>Xu, Laiqiang</au><au>Hu, Xinyu</au><au>Yang, Mushi</au><au>Liu, Huaxin</au><au>Gan, Chaolun</au><au>Deng, Wentao</au><au>Zou, Guoqiang</au><au>Hou, Hongshuai</au><au>Ji, Xiaobo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Trace Fluorinated Carbon Dots Driven Li‐Garnet Solid‐State Batteries</atitle><jtitle>Angewandte Chemie</jtitle><date>2024-09-02</date><risdate>2024</risdate><volume>136</volume><issue>36</issue><epage>n/a</epage><issn>0044-8249</issn><eissn>1521-3757</eissn><abstract>Garnet solid‐state electrolyte Li6.5La3Zr1.5Ta0.5O12 (LLZTO) holds significant promise. However, the practical utilization has been seriously impeded by the poor contact of Li|garnet and electron leakage. Herein, one new type of garnet‐based solid‐state battery is proposed with high performance through the disparity in interfacial energy, induced by the reaction between trace fluorinated carbon dots (FCDs) and Li. The work of adhesion of Li|garnet is increased by the acquired Li‐FCD composite, which facilitates an intimate Li|garnet interface with the promoted uniform Li+ deposition, revealed by density functional theory (DFT) calculations. It is further validated that a concentrated C−Li2O−LiF component at the Li|garnet interface is spontaneously constructed, due to the significant disparity in interfacial energy between C−Li2O−LiF|LLZTO and C−Li2O−LiF|Li. Furthermore, The electron transport and Li dendrites penetration are effectively hindered by the formed Li2O and LiF. The Li‐FCD|LLZTO|Li‐FCD symmetrical cells demonstrate stable cycling performance for over 3000 hours at 0.3 mA cm−2 and 800 hours at 0.5 mA cm−2. Furthermore, the LFP|garnet|Li‐FCD full cell exhibits remarkable cycling performance (91.6 % capacity retention after 500 cycles at 1 C). Our research has revealed a novel approach to establish a dendrite‐free Li|garnet interface, laying the groundwork for future advancements in garnet‐based solid‐state batteries.
The pristine garnet surface exhibits poor wettability with Li metal, resulting in the formation of voids and gaps at the garnet/Li interface, which contributes to uneven electric field distribution and further leads to Li dendrite formation. A straightforward method is presented to construct a Li‐FCD composite for garnet‐based solid‐state batteries by the reaction between molten Li and a trace amount of FCDs (0.5 wt %). The Li‐FCD composite transforms the weak interface connection into intimate contact with garnet and inhibits electron leakage, thereby enhancing Li+ transfer across the interface and promoting dendrite‐free operation.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/ange.202410016</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-5405-7913</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0044-8249 |
ispartof | Angewandte Chemie, 2024-09, Vol.136 (36), p.n/a |
issn | 0044-8249 1521-3757 |
language | eng ; ger |
recordid | cdi_proquest_journals_3096783882 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | Carbon Carbon dots Dendrites Density functional theory Electrolytic cells electron leakage Electron transport fluorinated carbon dots Fluorination garnet electrolyte Garnets interface contact Interfacial energy Li dendrite Lithium fluoride Lithium oxides |
title | Trace Fluorinated Carbon Dots Driven Li‐Garnet Solid‐State Batteries |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T00%3A31%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Trace%20Fluorinated%20Carbon%20Dots%20Driven%20Li%E2%80%90Garnet%20Solid%E2%80%90State%20Batteries&rft.jtitle=Angewandte%20Chemie&rft.au=Zhu,%20Fangjun&rft.date=2024-09-02&rft.volume=136&rft.issue=36&rft.epage=n/a&rft.issn=0044-8249&rft.eissn=1521-3757&rft_id=info:doi/10.1002/ange.202410016&rft_dat=%3Cproquest_cross%3E3096783882%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3096783882&rft_id=info:pmid/&rfr_iscdi=true |