General In Situ Engineering of Carbon‐Based Materials on Carbon Fiber for In Vivo Neurochemical Sensing

Developing real‐time, dynamic, and in situ analytical methods with high spatial and temporal resolutions is crucial for exploring biochemical processes in the brain. Although in vivo electrochemical methods based on carbon fiber (CF) microelectrodes are effective in monitoring neurochemical dynamics...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Angewandte Chemie 2024-09, Vol.136 (36), p.n/a
Hauptverfasser: Zeng, Hui, Ren, Guoyuan, Gao, Nan, Xu, Tianci, Jin, Peng, Yin, Yongyue, Liu, Rantong, Zhang, Shuai, Zhang, Meining, Mao, Lanqun
Format: Artikel
Sprache:eng ; ger
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 36
container_start_page
container_title Angewandte Chemie
container_volume 136
creator Zeng, Hui
Ren, Guoyuan
Gao, Nan
Xu, Tianci
Jin, Peng
Yin, Yongyue
Liu, Rantong
Zhang, Shuai
Zhang, Meining
Mao, Lanqun
description Developing real‐time, dynamic, and in situ analytical methods with high spatial and temporal resolutions is crucial for exploring biochemical processes in the brain. Although in vivo electrochemical methods based on carbon fiber (CF) microelectrodes are effective in monitoring neurochemical dynamics during physiological and pathological processes, complex post modification hinders large‐scale productions and widespread neuroscience applications. Herein, we develop a general strategy for the in situ engineering of carbon‐based materials to mass‐produce functional CFs by introducing polydopamine to anchor zeolitic imidazolate frameworks as precursors, followed by one‐step pyrolysis. This strategy demonstrates exceptional universality and design flexibility, overcoming complex post‐modification procedures and avoiding the delamination of the modification layer. This simplifies the fabrication and integration of functional CF‐based microelectrodes. Moreover, we design highly stable and selective H+, O2, and ascorbate microsensors and monitor the influence of CO2 exposure on the O2 content of the cerebral tissue during physiological and ischemia‐reperfusion pathological processes. An in situ engineering strategy for the large‐scale production of functional carbon fibers was developed by introducing polydopamine to anchor zeolitic imidazolate frameworks as precursors. This strategy overcomes complex post‐modification procedures and avoids the delamination of the modification layer, enabling the fabrication and integration of neurochemical microsensors with high sensitivity, selectivity, and stability.
doi_str_mv 10.1002/ange.202407063
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3096783716</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3096783716</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1173-a4d97291af5f8e2b690d152e8f8cc57f048abed6bbca706d332dd3a8e08e7c9c3</originalsourceid><addsrcrecordid>eNqFkM1OAjEUhRujiYhuXTdxPdifmWlniQSQBHGBup10OnewBFpsGQ07H8Fn9EksgejS1V2c852bcxC6pqRHCWG3yi6gxwhLiSA5P0EdmjGacJGJU9QhJE0TydLiHF2EsCSE5EwUHWTGYMGrFZ5YPDfbFg_twlgAb-wCuwYPlK-c_f78ulMBavygtlFSq4CdPWp4ZCrwuHF-n_Fi3h2eQeudfoW10TF5DjbEtEt01kQQro63i55Hw6fBfTJ9HE8G_WmiKRU8UWldCFZQ1WSNBFblBaljEZCN1DoTDUmlqqDOq0qr2LPmnNU1VxKIBKELzbvo5pC78e6thbAtl671Nr4sOSlyIbmgeXT1Di7tXQgemnLjzVr5XUlJuZ-z3M9Z_s4ZgeIAfJgV7P5xl_3ZePjH_gA1Tnqa</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3096783716</pqid></control><display><type>article</type><title>General In Situ Engineering of Carbon‐Based Materials on Carbon Fiber for In Vivo Neurochemical Sensing</title><source>Access via Wiley Online Library</source><creator>Zeng, Hui ; Ren, Guoyuan ; Gao, Nan ; Xu, Tianci ; Jin, Peng ; Yin, Yongyue ; Liu, Rantong ; Zhang, Shuai ; Zhang, Meining ; Mao, Lanqun</creator><creatorcontrib>Zeng, Hui ; Ren, Guoyuan ; Gao, Nan ; Xu, Tianci ; Jin, Peng ; Yin, Yongyue ; Liu, Rantong ; Zhang, Shuai ; Zhang, Meining ; Mao, Lanqun</creatorcontrib><description>Developing real‐time, dynamic, and in situ analytical methods with high spatial and temporal resolutions is crucial for exploring biochemical processes in the brain. Although in vivo electrochemical methods based on carbon fiber (CF) microelectrodes are effective in monitoring neurochemical dynamics during physiological and pathological processes, complex post modification hinders large‐scale productions and widespread neuroscience applications. Herein, we develop a general strategy for the in situ engineering of carbon‐based materials to mass‐produce functional CFs by introducing polydopamine to anchor zeolitic imidazolate frameworks as precursors, followed by one‐step pyrolysis. This strategy demonstrates exceptional universality and design flexibility, overcoming complex post‐modification procedures and avoiding the delamination of the modification layer. This simplifies the fabrication and integration of functional CF‐based microelectrodes. Moreover, we design highly stable and selective H+, O2, and ascorbate microsensors and monitor the influence of CO2 exposure on the O2 content of the cerebral tissue during physiological and ischemia‐reperfusion pathological processes. An in situ engineering strategy for the large‐scale production of functional carbon fibers was developed by introducing polydopamine to anchor zeolitic imidazolate frameworks as precursors. This strategy overcomes complex post‐modification procedures and avoids the delamination of the modification layer, enabling the fabrication and integration of neurochemical microsensors with high sensitivity, selectivity, and stability.</description><identifier>ISSN: 0044-8249</identifier><identifier>EISSN: 1521-3757</identifier><identifier>DOI: 10.1002/ange.202407063</identifier><language>eng ; ger</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Ascorbic acid ; Carbon dioxide ; Carbon fibers ; carbon-based electrocatalyst ; Electrochemistry ; Fabrication ; in situ engineering ; in vivo electrochemistry ; In vivo methods and tests ; Ischemia ; Metal-organic frameworks ; Microelectrodes ; microsensor ; neurochemical sensing ; Oxygen content ; Physiology ; Pyrolysis ; Reperfusion ; Zeolites</subject><ispartof>Angewandte Chemie, 2024-09, Vol.136 (36), p.n/a</ispartof><rights>2024 Wiley-VCH GmbH</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c1173-a4d97291af5f8e2b690d152e8f8cc57f048abed6bbca706d332dd3a8e08e7c9c3</cites><orcidid>0000-0002-7061-6025</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fange.202407063$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fange.202407063$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Zeng, Hui</creatorcontrib><creatorcontrib>Ren, Guoyuan</creatorcontrib><creatorcontrib>Gao, Nan</creatorcontrib><creatorcontrib>Xu, Tianci</creatorcontrib><creatorcontrib>Jin, Peng</creatorcontrib><creatorcontrib>Yin, Yongyue</creatorcontrib><creatorcontrib>Liu, Rantong</creatorcontrib><creatorcontrib>Zhang, Shuai</creatorcontrib><creatorcontrib>Zhang, Meining</creatorcontrib><creatorcontrib>Mao, Lanqun</creatorcontrib><title>General In Situ Engineering of Carbon‐Based Materials on Carbon Fiber for In Vivo Neurochemical Sensing</title><title>Angewandte Chemie</title><description>Developing real‐time, dynamic, and in situ analytical methods with high spatial and temporal resolutions is crucial for exploring biochemical processes in the brain. Although in vivo electrochemical methods based on carbon fiber (CF) microelectrodes are effective in monitoring neurochemical dynamics during physiological and pathological processes, complex post modification hinders large‐scale productions and widespread neuroscience applications. Herein, we develop a general strategy for the in situ engineering of carbon‐based materials to mass‐produce functional CFs by introducing polydopamine to anchor zeolitic imidazolate frameworks as precursors, followed by one‐step pyrolysis. This strategy demonstrates exceptional universality and design flexibility, overcoming complex post‐modification procedures and avoiding the delamination of the modification layer. This simplifies the fabrication and integration of functional CF‐based microelectrodes. Moreover, we design highly stable and selective H+, O2, and ascorbate microsensors and monitor the influence of CO2 exposure on the O2 content of the cerebral tissue during physiological and ischemia‐reperfusion pathological processes. An in situ engineering strategy for the large‐scale production of functional carbon fibers was developed by introducing polydopamine to anchor zeolitic imidazolate frameworks as precursors. This strategy overcomes complex post‐modification procedures and avoids the delamination of the modification layer, enabling the fabrication and integration of neurochemical microsensors with high sensitivity, selectivity, and stability.</description><subject>Ascorbic acid</subject><subject>Carbon dioxide</subject><subject>Carbon fibers</subject><subject>carbon-based electrocatalyst</subject><subject>Electrochemistry</subject><subject>Fabrication</subject><subject>in situ engineering</subject><subject>in vivo electrochemistry</subject><subject>In vivo methods and tests</subject><subject>Ischemia</subject><subject>Metal-organic frameworks</subject><subject>Microelectrodes</subject><subject>microsensor</subject><subject>neurochemical sensing</subject><subject>Oxygen content</subject><subject>Physiology</subject><subject>Pyrolysis</subject><subject>Reperfusion</subject><subject>Zeolites</subject><issn>0044-8249</issn><issn>1521-3757</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNqFkM1OAjEUhRujiYhuXTdxPdifmWlniQSQBHGBup10OnewBFpsGQ07H8Fn9EksgejS1V2c852bcxC6pqRHCWG3yi6gxwhLiSA5P0EdmjGacJGJU9QhJE0TydLiHF2EsCSE5EwUHWTGYMGrFZ5YPDfbFg_twlgAb-wCuwYPlK-c_f78ulMBavygtlFSq4CdPWp4ZCrwuHF-n_Fi3h2eQeudfoW10TF5DjbEtEt01kQQro63i55Hw6fBfTJ9HE8G_WmiKRU8UWldCFZQ1WSNBFblBaljEZCN1DoTDUmlqqDOq0qr2LPmnNU1VxKIBKELzbvo5pC78e6thbAtl671Nr4sOSlyIbmgeXT1Di7tXQgemnLjzVr5XUlJuZ-z3M9Z_s4ZgeIAfJgV7P5xl_3ZePjH_gA1Tnqa</recordid><startdate>20240902</startdate><enddate>20240902</enddate><creator>Zeng, Hui</creator><creator>Ren, Guoyuan</creator><creator>Gao, Nan</creator><creator>Xu, Tianci</creator><creator>Jin, Peng</creator><creator>Yin, Yongyue</creator><creator>Liu, Rantong</creator><creator>Zhang, Shuai</creator><creator>Zhang, Meining</creator><creator>Mao, Lanqun</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-7061-6025</orcidid></search><sort><creationdate>20240902</creationdate><title>General In Situ Engineering of Carbon‐Based Materials on Carbon Fiber for In Vivo Neurochemical Sensing</title><author>Zeng, Hui ; Ren, Guoyuan ; Gao, Nan ; Xu, Tianci ; Jin, Peng ; Yin, Yongyue ; Liu, Rantong ; Zhang, Shuai ; Zhang, Meining ; Mao, Lanqun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1173-a4d97291af5f8e2b690d152e8f8cc57f048abed6bbca706d332dd3a8e08e7c9c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng ; ger</language><creationdate>2024</creationdate><topic>Ascorbic acid</topic><topic>Carbon dioxide</topic><topic>Carbon fibers</topic><topic>carbon-based electrocatalyst</topic><topic>Electrochemistry</topic><topic>Fabrication</topic><topic>in situ engineering</topic><topic>in vivo electrochemistry</topic><topic>In vivo methods and tests</topic><topic>Ischemia</topic><topic>Metal-organic frameworks</topic><topic>Microelectrodes</topic><topic>microsensor</topic><topic>neurochemical sensing</topic><topic>Oxygen content</topic><topic>Physiology</topic><topic>Pyrolysis</topic><topic>Reperfusion</topic><topic>Zeolites</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zeng, Hui</creatorcontrib><creatorcontrib>Ren, Guoyuan</creatorcontrib><creatorcontrib>Gao, Nan</creatorcontrib><creatorcontrib>Xu, Tianci</creatorcontrib><creatorcontrib>Jin, Peng</creatorcontrib><creatorcontrib>Yin, Yongyue</creatorcontrib><creatorcontrib>Liu, Rantong</creatorcontrib><creatorcontrib>Zhang, Shuai</creatorcontrib><creatorcontrib>Zhang, Meining</creatorcontrib><creatorcontrib>Mao, Lanqun</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Angewandte Chemie</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zeng, Hui</au><au>Ren, Guoyuan</au><au>Gao, Nan</au><au>Xu, Tianci</au><au>Jin, Peng</au><au>Yin, Yongyue</au><au>Liu, Rantong</au><au>Zhang, Shuai</au><au>Zhang, Meining</au><au>Mao, Lanqun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>General In Situ Engineering of Carbon‐Based Materials on Carbon Fiber for In Vivo Neurochemical Sensing</atitle><jtitle>Angewandte Chemie</jtitle><date>2024-09-02</date><risdate>2024</risdate><volume>136</volume><issue>36</issue><epage>n/a</epage><issn>0044-8249</issn><eissn>1521-3757</eissn><abstract>Developing real‐time, dynamic, and in situ analytical methods with high spatial and temporal resolutions is crucial for exploring biochemical processes in the brain. Although in vivo electrochemical methods based on carbon fiber (CF) microelectrodes are effective in monitoring neurochemical dynamics during physiological and pathological processes, complex post modification hinders large‐scale productions and widespread neuroscience applications. Herein, we develop a general strategy for the in situ engineering of carbon‐based materials to mass‐produce functional CFs by introducing polydopamine to anchor zeolitic imidazolate frameworks as precursors, followed by one‐step pyrolysis. This strategy demonstrates exceptional universality and design flexibility, overcoming complex post‐modification procedures and avoiding the delamination of the modification layer. This simplifies the fabrication and integration of functional CF‐based microelectrodes. Moreover, we design highly stable and selective H+, O2, and ascorbate microsensors and monitor the influence of CO2 exposure on the O2 content of the cerebral tissue during physiological and ischemia‐reperfusion pathological processes. An in situ engineering strategy for the large‐scale production of functional carbon fibers was developed by introducing polydopamine to anchor zeolitic imidazolate frameworks as precursors. This strategy overcomes complex post‐modification procedures and avoids the delamination of the modification layer, enabling the fabrication and integration of neurochemical microsensors with high sensitivity, selectivity, and stability.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/ange.202407063</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-7061-6025</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0044-8249
ispartof Angewandte Chemie, 2024-09, Vol.136 (36), p.n/a
issn 0044-8249
1521-3757
language eng ; ger
recordid cdi_proquest_journals_3096783716
source Access via Wiley Online Library
subjects Ascorbic acid
Carbon dioxide
Carbon fibers
carbon-based electrocatalyst
Electrochemistry
Fabrication
in situ engineering
in vivo electrochemistry
In vivo methods and tests
Ischemia
Metal-organic frameworks
Microelectrodes
microsensor
neurochemical sensing
Oxygen content
Physiology
Pyrolysis
Reperfusion
Zeolites
title General In Situ Engineering of Carbon‐Based Materials on Carbon Fiber for In Vivo Neurochemical Sensing
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T20%3A59%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=General%20In%20Situ%20Engineering%20of%20Carbon%E2%80%90Based%20Materials%20on%20Carbon%20Fiber%20for%20In%20Vivo%20Neurochemical%20Sensing&rft.jtitle=Angewandte%20Chemie&rft.au=Zeng,%20Hui&rft.date=2024-09-02&rft.volume=136&rft.issue=36&rft.epage=n/a&rft.issn=0044-8249&rft.eissn=1521-3757&rft_id=info:doi/10.1002/ange.202407063&rft_dat=%3Cproquest_cross%3E3096783716%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3096783716&rft_id=info:pmid/&rfr_iscdi=true