Newton strata in Levi subgroups

Certain Iwahori double cosets in the loop group of a reductive group, known under the names of P -alcoves or ( J , w , δ ) -alcoves, play an important role in the study of affine Deligne–Lusztig varieties. For such an Iwahori double coset, its Newton stratification is related to the Newton stratific...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Manuscripta mathematica 2024-09, Vol.175 (1-2), p.513-519
1. Verfasser: Schremmer, Felix
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 519
container_issue 1-2
container_start_page 513
container_title Manuscripta mathematica
container_volume 175
creator Schremmer, Felix
description Certain Iwahori double cosets in the loop group of a reductive group, known under the names of P -alcoves or ( J , w , δ ) -alcoves, play an important role in the study of affine Deligne–Lusztig varieties. For such an Iwahori double coset, its Newton stratification is related to the Newton stratification of an Iwahori double coset in a Levi subgroup. We study this relationship further, providing in particular a bijection between the occurring Newton strata. As an application, we prove a conjecture of Dong-Gyu Lim, giving a non-emptiness criterion for basic affine Deligne–Lusztig varieties.
doi_str_mv 10.1007/s00229-024-01566-y
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3096660073</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3096660073</sourcerecordid><originalsourceid>FETCH-LOGICAL-c244t-96e1c53830f6f9d0143dcf9db953cba98acd01bba618f6aca46ff825b6142c663</originalsourceid><addsrcrecordid>eNp9kE1LxDAQhoMoWFf_gBcLnqP5nDZHWfyCohc9hySbLF20rUmr9N-btYI3TzPMvO87zIPQOSVXlJDqOhHCmMKECUyoBMDzASqo4AzTqpaHqMh7iRlQeoxOUtoRkpcVL9DFk_8a-65MYzSjKduubPxnW6bJbmM_DekUHQXzlvzZb12h17vbl_UDbp7vH9c3DXZMiBEr8NRJXnMSIKjNPn3jcmOV5M4aVRuXh9YaoHUA44yAEGomLVDBHABfocsld4j9x-TTqHf9FLt8UnOiACB_ybOKLSoX-5SiD3qI7buJs6ZE70HoBYTOIPQPCD1nE19MKYu7rY9_0f-4vgGLd1_Z</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3096660073</pqid></control><display><type>article</type><title>Newton strata in Levi subgroups</title><source>Springer Nature - Complete Springer Journals</source><creator>Schremmer, Felix</creator><creatorcontrib>Schremmer, Felix</creatorcontrib><description>Certain Iwahori double cosets in the loop group of a reductive group, known under the names of P -alcoves or ( J , w , δ ) -alcoves, play an important role in the study of affine Deligne–Lusztig varieties. For such an Iwahori double coset, its Newton stratification is related to the Newton stratification of an Iwahori double coset in a Levi subgroup. We study this relationship further, providing in particular a bijection between the occurring Newton strata. As an application, we prove a conjecture of Dong-Gyu Lim, giving a non-emptiness criterion for basic affine Deligne–Lusztig varieties.</description><identifier>ISSN: 0025-2611</identifier><identifier>EISSN: 1432-1785</identifier><identifier>DOI: 10.1007/s00229-024-01566-y</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Algebraic Geometry ; Calculus of Variations and Optimal Control; Optimization ; Geometry ; Lie Groups ; Mathematics ; Mathematics and Statistics ; Number Theory ; Stratification ; Subgroups ; Topological Groups</subject><ispartof>Manuscripta mathematica, 2024-09, Vol.175 (1-2), p.513-519</ispartof><rights>The Author(s) 2024</rights><rights>The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c244t-96e1c53830f6f9d0143dcf9db953cba98acd01bba618f6aca46ff825b6142c663</cites><orcidid>0000-0002-3894-3894</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00229-024-01566-y$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00229-024-01566-y$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Schremmer, Felix</creatorcontrib><title>Newton strata in Levi subgroups</title><title>Manuscripta mathematica</title><addtitle>manuscripta math</addtitle><description>Certain Iwahori double cosets in the loop group of a reductive group, known under the names of P -alcoves or ( J , w , δ ) -alcoves, play an important role in the study of affine Deligne–Lusztig varieties. For such an Iwahori double coset, its Newton stratification is related to the Newton stratification of an Iwahori double coset in a Levi subgroup. We study this relationship further, providing in particular a bijection between the occurring Newton strata. As an application, we prove a conjecture of Dong-Gyu Lim, giving a non-emptiness criterion for basic affine Deligne–Lusztig varieties.</description><subject>Algebraic Geometry</subject><subject>Calculus of Variations and Optimal Control; Optimization</subject><subject>Geometry</subject><subject>Lie Groups</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Number Theory</subject><subject>Stratification</subject><subject>Subgroups</subject><subject>Topological Groups</subject><issn>0025-2611</issn><issn>1432-1785</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><recordid>eNp9kE1LxDAQhoMoWFf_gBcLnqP5nDZHWfyCohc9hySbLF20rUmr9N-btYI3TzPMvO87zIPQOSVXlJDqOhHCmMKECUyoBMDzASqo4AzTqpaHqMh7iRlQeoxOUtoRkpcVL9DFk_8a-65MYzSjKduubPxnW6bJbmM_DekUHQXzlvzZb12h17vbl_UDbp7vH9c3DXZMiBEr8NRJXnMSIKjNPn3jcmOV5M4aVRuXh9YaoHUA44yAEGomLVDBHABfocsld4j9x-TTqHf9FLt8UnOiACB_ybOKLSoX-5SiD3qI7buJs6ZE70HoBYTOIPQPCD1nE19MKYu7rY9_0f-4vgGLd1_Z</recordid><startdate>20240901</startdate><enddate>20240901</enddate><creator>Schremmer, Felix</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-3894-3894</orcidid></search><sort><creationdate>20240901</creationdate><title>Newton strata in Levi subgroups</title><author>Schremmer, Felix</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c244t-96e1c53830f6f9d0143dcf9db953cba98acd01bba618f6aca46ff825b6142c663</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algebraic Geometry</topic><topic>Calculus of Variations and Optimal Control; Optimization</topic><topic>Geometry</topic><topic>Lie Groups</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Number Theory</topic><topic>Stratification</topic><topic>Subgroups</topic><topic>Topological Groups</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Schremmer, Felix</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><jtitle>Manuscripta mathematica</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Schremmer, Felix</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Newton strata in Levi subgroups</atitle><jtitle>Manuscripta mathematica</jtitle><stitle>manuscripta math</stitle><date>2024-09-01</date><risdate>2024</risdate><volume>175</volume><issue>1-2</issue><spage>513</spage><epage>519</epage><pages>513-519</pages><issn>0025-2611</issn><eissn>1432-1785</eissn><abstract>Certain Iwahori double cosets in the loop group of a reductive group, known under the names of P -alcoves or ( J , w , δ ) -alcoves, play an important role in the study of affine Deligne–Lusztig varieties. For such an Iwahori double coset, its Newton stratification is related to the Newton stratification of an Iwahori double coset in a Levi subgroup. We study this relationship further, providing in particular a bijection between the occurring Newton strata. As an application, we prove a conjecture of Dong-Gyu Lim, giving a non-emptiness criterion for basic affine Deligne–Lusztig varieties.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00229-024-01566-y</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-3894-3894</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0025-2611
ispartof Manuscripta mathematica, 2024-09, Vol.175 (1-2), p.513-519
issn 0025-2611
1432-1785
language eng
recordid cdi_proquest_journals_3096660073
source Springer Nature - Complete Springer Journals
subjects Algebraic Geometry
Calculus of Variations and Optimal Control
Optimization
Geometry
Lie Groups
Mathematics
Mathematics and Statistics
Number Theory
Stratification
Subgroups
Topological Groups
title Newton strata in Levi subgroups
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T16%3A54%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Newton%20strata%20in%20Levi%20subgroups&rft.jtitle=Manuscripta%20mathematica&rft.au=Schremmer,%20Felix&rft.date=2024-09-01&rft.volume=175&rft.issue=1-2&rft.spage=513&rft.epage=519&rft.pages=513-519&rft.issn=0025-2611&rft.eissn=1432-1785&rft_id=info:doi/10.1007/s00229-024-01566-y&rft_dat=%3Cproquest_cross%3E3096660073%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3096660073&rft_id=info:pmid/&rfr_iscdi=true